

The Motto of the University

(SEWA)

SKILL ENHANCEMENT EMPLOYABILITY WISDOM

 ACCESSIBILITY

DIPLOMA IN SOFTWARE DEVELOPMENT AND PROGRAMMING

 SEMESTER-II

 Course: DBMS Lab

 Course Code: DBMS-2-01P

 ADDRESS: C/28, THE LOWER MALL, PATIALA-147001

 WEBSITE: www.psou.ac.in

S
E

L
F

-I
N

S
T

R
U

C
T

IO
N

A
L

 S
T

U
D

Y
 M

A
T

E
R

IA
L

 F
O

R
 J

G
N

D
 P

S
O

U
,
A

L
L

 C
O

P
Y

R
IG

H
T

S
 W

IT
H

 J
G

N
D

 P
S

O
U

,
P

A
T

IA
L

A

JAGAT GURU NANAK DEV

PUNJAB STATE OPEN UNIVERSITY, PATIALA
(Established by Act No. 19 of 2019 of the Legislature of State of Punjab)

http://www.psou.ac.in/

DBMS-2-01P: Data Base Management System (DBMS) Lab

 Total Marks: 50

 External Marks: 35

Internal Marks: 15

Credits: 2

Pass Percentage: 40%

Course: Data Base Management System (DBMS) Lab

Course Code: DBMS-2-01P

Course Outcomes (COs)

After the completion of this course, the students will be able to:

CO1 Implement Basic DDL, DML and DCL commands.

CO2 Understand Data selection and operators used in queries and restrict data retrieval and

control the display order.

CO3 Use Aggregate and group functions to summarize data.

CO4 Join multiple tables using different types of joins.

CO5 Implementation of different types of operators in SQL

Detailed List of Programs:

Programme No. Name of Program

P1 Implementation of DDL commands of SQL with suitable examples

 Create table

 Alter table

 Drop Table

P2 Implementation of DML commands of SQL with suitable examples

 Insert

 Update

 Delete

P3 Implementation of different types of function with suitable examples

 Number function

 Aggregate Function

 Character Function

 Conversion Function

 Date Function

P4 Implementation of different types of operators in SQL

 Arithmetic Operators

 Logical Operators

 Comparison Operator

 Special Operator

 Set Operation

P5 Implementation of different types of Joins

 Inner Join

 Outer Join

 Natural Join etc.

P6 Implementation of

 Group by & having clause

 Order by clause

 Indexing

P7 Implementation of

 Sub queries

 Views

P8 Study & Implementation of different types of constraints.

P9 Study & Implementation of Database Backup & Recovery commands.

Study & Implementation of Rollback, Commit, Savepoint.

P10 Creating Database /Table Space

 Managing Users: Create User, Delete User

 Managing roles:-Grant, Revoke

Q1. The E-R Diagram for an Employee Payroll System.

Q2. Explain with diagrammatical illustrations about the different types of

relationships.

 It is used to connect the entities.

 The entities involved in given relationship are called participants.

 The no. of participants in a given relationship is called degree of

relationship.

 sign is used to represent relationship among entities.

 Deposit is a relationship among entity customer and entity account.

 Relationship can be of four types which are as follows:

Types of Relationship

(a) One to One Relationship: In one to one relationship for one record in

entity A, there is exactly one record in entity B. For example: we have two entities

department and department head. There is one to one relationship because one

department will be under one head and one head will be appointed for one department.

(b) One to Many Relationship: In one to many relationships for one record in

entity A, there is more than one record in entity B. For example: We have two entities

department and employee. There is one to many relationships because there will be one

department in a company and more than one employee will work in that particular

department.

(c) Many to One Relationship: In many to one relationship, for many records

in entity A, there is only one record in entity B. For example: We have two entities

employee and department. There is many to one relationship because there will be many

employees in a single

(d) Many to Many Relationship: In many to many relationships, for many

record is an entity A, there will be many record in entity B. There is many to many

relationship because there will be many customers for many items.

Q3. The various set operators available in relational algebra with suitable examples.

The relational model uses the concept of a mathematical relation in the form of

table of values which acts as building block. The table is a logical representation of data

in the form of rows and columns. The relational algebra is a formal query language

applied on relational model. It is a procedural language which specifies the operations to

be performed on relations. The operations are performed in form of sequence of algebra

operations which results in a new relation/table. The relational algebra operations can be

classified into two types.

Key Points:

1. Relational algebra is a procedural query language.

2. It consists of set of operators that take one or two relations as input and produce a

new relation as output.

3. It uses relational operators.

4. It is of mainly two types which are as follows:

Classification of Relational Algebra

I. Traditional Set Operators

(a)Union Operator

(b)Intersection Operator

(c)Difference Operator

(d)Cartesian Product Operator

(a) Union Operator:

• Union of two relations is the set of all elements belonging to both relations.

• Result must not contain duplicate elements.

• It is denoted by U.

• For example: We want to list all the names and roll numbers which are present in

both tables: 'A' and 'B'.

AB

Name Roll Number Name Roll Number

Akhil 211 Aastha 112

Monika 129 Akhil 211

Formula:Name, Roll Number (A) U Name, Roll Number (B).

AUB

Name Roll Number

Akhil 211

Monika 129

Aastha 112

(b) Intersection Operator:

• Intersection of two relations produces a relation which contains all elements that

are common to both relations.

• It is denoted by .

• For example: We want to list only those names and roll numbers which are

common in both tables 'A' and 'B'.

A B

Name Roll Number Name Roll Number

Akhil 211 Aastha 112

Monika 129 Akhil 211

Formula:Name, Roll Number (A) Name, Roll Number (B)

AB

Name Roll Number

Akhil 211

(c) Difference Operator

• Difference operator is used to find those tuples which are present in one relation

but not in another relation.

• It is denoted by (-) sign.

• For example: We want to list those names and roll numbers which are present in

table 'A9 only, not in table'B'.

AB

Name Roll Number Name Roll Number

Akhil 211 Aastha 112

Monika 129 Akhil 211

Formula:Name, Roll Number (A) –Name, Roll Number (B)

A-B B-A

Name Roll Number Name Roll Number

Monika 129 Aastha 112

(d) Cartesian Product

• Cartesian product operator is used to combine information from any two

relations.

• It is denoted by (X) symbol.

• For example: We want to list the names of employees with all departments of

tables 'A'and'B'.

AB

Name Emp_No Dept_Id Dept_Name Dept_Id

Akhil 101 11 Production 11

Monika 102 12 Accounts 12

Aastha 101 11

Formula: Name (A) X Dept_Name (B)

AXB

Name Dept_Name

Akhil Production

Akhil Accounts

Monika Accounts

Monika Production

Aastha Production

Aastha Accounts

II. Special Operators

(a) Selection Operator

(b) Projection Operator

(c) Join Operator

(d) Division Operator

(a) Selection Operator

• Selection operator selects tuples (rows) that satisfy a given condition.

• It is denoted by lower Greek letter sigma (a).

• We can also use folio wing symbols: = >,<>>=,<= #

• For example: We want to list the tuples (employees) who live in city 'chd'.

Formula: city = "chd" (employee)

(b) Projection Operator

• Projection operator returns a new relation as output with certain attributes.

• It is denoted by Greek letter pie ().

• For example: We want to list all the emp_no and name of employee.

Formula: emp_no, name (employee)

(c) Join Operator

• Join operator is also known as natural join operator.

• It is denoted by the symbol ([><]).

• Cartesian product operator is used to combine two tables, but the output of

Cartesianproduct is not correct

• Join operator is used to combine the two tables instead of Cartesian product

operator.

• For example: We want to combine the two tables 'A'and 'B'.

(d) Division Operator

• Division operator will work on two relations (tables).

• It make another relation consisting of values of an attribute of one relation that

match all the values in the another relation.

• It is denoted by the () symbol.

Formula: Name (A B)

(A B)

Name

Akhil

Q4. Explain relational calculus in detail.

1. It was first proposed by E.F.Codd.

2. It is a formal language used to symbolize logical arguments in mathematics.

3. In relational calculus, query is expressed as formula containing number of

variables and expression.

4. User will only tell the requirement without knowing the methods of retrieval.

5. User is not concerned with the procedure to obtain the results.

6. It is the responsibility of DBMS to transform these queries and give the result to

the user.

7. Relational calculus is of mainly two types which are as follows:

Classification of Relation Calculus

I. Tuple Oriented Relational Calculus

• It is based on specifying a number of tuples variables.

• The query of tuple relational calculus is

{t/COND(t)}

t-> is tuple variable

COND (t)->is conditional expression.

• The result of such query is a relation that contains all the types (rows) that

satisfy condition COND (t).

Query of relational calculus is:

{t. title, t. author/Book(t) and t. PRICE > 100}

It will give us title, author of all the books whose price is greater than 100.

Expression of tuple relational calculus is:

{t1. A1, t2.A2, t3.t3,…tn.An/COND (t1, t2, t3, …tn)}

t1, t2 …. are tuple variables.

A1, A2 … are the attributes of relations.

COND is condition.

II. Domain oriented relational calculus

• Domain calculus is different from tuple calculus in the type of variables used

in formula.

• In domain oriented relational calculus, variable range will be single value

rather than multiple values.

• Expression of domain oriented relational calculus is:

{X1, X2, …Xn | COND (X1, X2, … Xn)}

X1, X2, …Xn are domain variables.

COND is condition or formula of domain relation calculus.

i.e. Get employee no. of for job clerk

EX where EMP (emp no: EX, job = 'clerk')

Get employee name that belongs to dept no. 10 and having salary > 2000.

Ex where EMP (ename: EX, deptno = 10, sal> 2000)

Q5. What is INF? Give example to demonstrate how INF improves a table.

1. E.F. Cold introduced the first normal form (1NF) in 1970.

2. First normal form (1NF) eliminates the repeating columns from an un-normalized

table.

3. In 1NF, there is no repeating column (group).

4. We convert un-normalized table into normalized for.

5. Primary key is required in each table to identify a record.

6. The purpose of primary key is to uniquely identify a record.

7. First normal from depends on the functional dependency.

8. Formula : f(x)=y

 For every value of x, there is only one value for y.

9. For example: The following table "Student" having columns (Name, Course, Roll

Number) is an un-normalized table. We have to convert this un-normalized table

into normalized table.

Student

Name Course Roll Number

Akhil Science 211, 128

Monika Computer 129

Aastha Management 112

The above table "Student" is un-normalized because it contains more than one

value for the column 'Roll Number'. 'Akhil' has two values (211, 128) for the column 'roll

number' which is not possible. For normalization, there should be only one value in one

column.

The following are two methods to convert un-normalized table into normalized table:

 Method 1: To convert the un-normalized table "Student" into normalized form,

we decompose (divide) this un-normalized table into two tables.

Student 1

Name Course

Akhil Science

Monika Computer

A'astha Management

Student 2

Name Roll Number

Akhil 211

Akhil 128

Monika 129

Aastha 112

 Method 2: To convert the un-normalized table "Student" into normalized form,

we convert this this un-normalized table into flat table.

Student

Name Course Roll Number

Akhil Science 211

Akhil Science 128

Monika Computer 129

Aastha Management 112

Q6. Discuss 2NF. Discuss the problems that can be encountered in a table, which is

in INF, How 2NF solve them?

E.F. Codd introduced the second normal form (2NF) in 1971.

2. A relation is in 2NF if it fulfills the following conditions

 • Relation should be in INF and

 • Every non-key attribute (non-prime attribute) is fully functionally

dependent on Primary key.

3. For example-.The following table "Products" having columns (Item, Price,

Quantity, Order Number, and Order Date) is in INF.

Products

Item Price Quantity Order Number Order Date

Mobile 2000 20 11 1-7-2015

Sunglasses 1000 15 12 2-7-2015

Watch 800 18 13 3-7-2015

Wallet 600 12 14 4-7-2015

 The table "Products" has two primary key columns (Item and Order

Number).

 Price (non-primary key column) is fully functionally dependent on Item

(prime key column).

 Order Date (non-primary key column) is fully functionally dependent on

Order Number (prime key column).

 The table "Products" can be converted into second normal form (2NF) by

decomposing it into sub tables such as:

Item Price Order Number Order Date

Mobile 2000 11 1-7-2015

Sunglasses 1000 12 2-7-2015

Watch 800 13 3-7-2015

Wallet 600 14 4-7-2015

Item Quantity Number

Mobile 20 11

Sunglasses 15 12

Watch 18 13

Wallet 12 14

Q7. What is a lock? Differentiate between exclusive and shared lock. Give suitable

examples also.

1. A lock is a variable associated with the data item to describe its status.

2. Locks are used in concurrent transactions to ensure serializability.

3. It prevents undesired or inconsistent operations on shared resources by other

current transactions.

4. They are used to make the isolation property of transaction in the concurrent

environment.

5. They describe the status of the data item whether it has been modified or not.

6. A lock on any database object needs to be acquired by the transaction before

accessing it.

7. If transaction ‘A’ acquires a lock on a database object and another transaction 'B'

needs to access that database object, then the existing type of lock is checked.

8. According to the locking scheme, if the existing type of lock (transaction 'A') is

matched with another transaction's lock (transaction CB'), then transaction 4B' can

use that object.

9. But, if the existing type of lock (transaction 'A') is not matched with another

transaction's lock (transaction 'B'), then transaction attempting access is aborted or

blocked.

10. There are many types of locks but only one lock is used for each item in database.

Shared Locks

1. In a binary lock, only one transaction can get the lock on a particular data item.

But in shared lock, more than one transaction can use shared fock at a particular

time.

2. It is denoted by 'S'.

3. Shared lock is used only for reading purpose. It means, if a transaction want to

read data then it will use shared lock on it.

4. Read lock is a shared lock. It means multiple transactions can have read lock on

the same item in order to read it.

5. If a transaction 'A' has a shared lock on data item 'M', then other transaction 'B' can

only read that data item 'M' not write.

6. For example:

 Lock_S (M):  It is used to request a shared lock on data item 'M'.

 Unlock (M):  It is used to unlock data item 'M'.

Exclusive Locks

1. In a binary lock, only one transaction can get the lock on a particular data item.

But in exclusive look, more than one transaction can use exclusive lock at a

particular time.

2. It is denoted by 'X'

3. Exclusive lock is used only for writing purpose. It means, if a transaction want to

write data then it will use exclusive lock on it.

4. Write tock is an exclusive lock. It means multiple transactions can have write lock

on the same item in order to write it.

5. If a transaction 'T1' has obtains an exclusive lock on a data item then another

transaction 'T2' cannot perform read but performs write operation.

6. If a transaction 'A' has a exclusive lock on data item 'M', then other transaction 'B'

can only write that data item 'M' not read.

7. For example:

 Lock_X (M):  It is used to request an exclusive lock on data item 'M'.

 Unlock (M): It is used to unlock data item 'M'.

Compatibility of Locks

Compatibility of Locks Shared Exclusive

Shared True False

Exclusive False False

1. Shared lock is compatible with shared lock: According to this, more than one

transaction can read a data item. It means multiple transactions can have read lock

on the same item in order to read it.

2. Shared lock is not compatible with exclusive lock: According to this, if a data

item has exclusive lock, then no other transaction can make shared lock on that

particular data item.

3. Exclusive lock is not Compatible with exclusive lock: According to this, if a

data item has exclusive lock, then no other transaction can make exclusive lock on

that particular data item. No two transactions can make exclusive lock

simultaneously.

Q8. Explain DDC (Data Definition Language) commands in detail with suitable

examples.

It is used for defining data structures. These SQL commands are used for creating,

modifying and dropping the structure of database objects (relations).

These commands basically create, modify and drop the relations (tables) used in the

database.

The following are the various DDL commands:

Parts of DDL

1. Create: The create table command is used to create a new table. It creates the

relation (table) in a database. It includes its name, names and attributes of its columns.

One can create any number of columns with this command. If we want to add or remove

the columns after creating the table then we use alter table.

Syntax of Create New Table:->

SQL>CRE^VTE TABLE table_name

(

column_name1 data type,

column_name2 data type,

…….

column_nameN datatype

);

Note: We can also create a table from existing table by copying the existing table's

column.

Syntax of Create Table from Existing Table:->

SQL> CREATE TABLE new_table

As (SELECT * from old_table);

Examples of Create Command:-

1. We want to create a table 'STUD' in SQL.

Then the query will be:

SQL> CREATE TABLE STUD

(

NAME char (40),

CLASS char (5),

ROLL NUMBER (8)

);

Table created

2. We want to create a table 'BMP' in SQL. (Mostly queries of this book are based

on this table 'EMP')

SQL> CREATE TABLE EMP

(

ENAME char (15),

DEPTNO int,

JOB char (10),

EMPNO int,

SAL int,

HIREDATE int,

MGR int,

CITY char (10),

COMM int

);

Table created

2. Alter: It alters the structure of table from database. It alters the table along with

the columns. One can add one more than one column in a particular table with alter

command. With this command, filed type can be changed or a new field can be added. It

is used to enable or disable the integrity constraint. It is used to modify the column values

and constraints.

Syntax of Alter Command:

SQL> ALTER TABLE table_name

ADD/MODIFY/DROP column_name datatype;

Examples of Alter Command:

1. To add a column (DOB) in an existing table 'BMP'. Then the query will be:

SQL> ALTER TABLE EMP

ADD DOB date;

Table altered

2. To add multiples columns (DOB and MOBNO) to an existing table 'EMP'.

Then the query will be:

SQL>ALTER TABLE EMP

ADD (DOB date, MOBNO (11));

Table altered

3. Drop: With the drop command, we can drop the columns from table or we can

remove the table. It drops the column or constraints from the table. It deletes the string of

a table. It cannot be recovered. It use with caution. Drop operation is used with the alter

table command. It removes single column or multiple columns.

(a) Dropping Column: If we want to remove column, then we use drop

operation with alter table command.

Syntax of Dropping the Column:

SQL>ALTER TABLE table_name

DROP COLUMN column_name;

Examples of Dropping the Column:

1. To drop a column 'City' in an existing table 'EMP'. Then the query will be:

SQL>ALTER TABLE EMP

DROP COLUMN CITY;

Table altered.

2. To drop multiple columns (Hiredate and City) in an existing table 'EMP'.

Then the query will be:

SQL>ALTER TABLE EMP

DROP COLUMN (HIREDATE, CITY);

Table altered.

(b) Dropping Table: If we want to remove the table, then there is no need to

use it with alter table command. We can directly remove one or more columns with drop

table command.

• This command removes one or more table definitions and all data, indexes,

triggers, constraints and permission specifications.

• If we drop a table with drop table command, it deletes all rows from that

particular table. The table structure is also removed from the database and it

cannot get back.

Syntax of Dropping the Table

SQL> DROP TABLE table_name;

4. Truncate: It removes all the records from a table and memory. It releases the

memory occupied by the records of the table. Data cannot be recovered after using the

truncate command. Truncate command removes all the rows from a table.

Syntax of Truncate Command:

SQL> TRUNCATE TABLE table_name;

Example of Truncate Command:

We want to delete all rows from the table 'EMP'. Then the query will be:

SQL> TRUNCATE TABLE EMP;

5. Rename: It is used to rename the old table with a new name. The data will remain

same, only name of table will be change with 'Rename Command'.

Syntax of Rename Command:

SQL> RENAME <Old Table_Name>to<New Table_Name>;

Example of Rename Command:

If we want to change the name of table 'EMP' to new name 'EMPLOYEE'. Then

the query will be:

SQL>RENAME EMP TO EMPLOYEE;

Note: We use drop command for tables and delete command for records.

Q9. Explain DML (Data Manipulation Language) commands in detail with suitable

examples.

• These commands are used for inserting, retrieving, deleting and modifying the

data in a relation or a table.

• It includes the query language based on both relational algebra and tuple relation.

• These commands do not implicitly commit the current transaction.

• The folio wing are the various DML commands:

Parts of DML

1. Insert

• When a new table is created, there is no data in the table.

• Insert command is used to insert the records in the new table.

• Insert command is used to add records to an existing table.

• 'Values clause' is used with inset command. This command will insert value in all

the columns of a table in sequence.

Syntax of Insert Command:

SQL> INSERT INTO table_name

VALUES (value1, valueZ, valueS,.....);

OR

SQL> INSERT INTO table_name (column1, column2, column3,......)

VALUES (value1, value2, value3,....);

Examples of Insert Command:

1. Insert record in different order. Then the query will be:

SQL> INSERT INTO EMP (name, city, salary, emp_no)

VALUES ('Mona','Nba', 4500, 4);

2. Insert the Null value in record. Then the query will be:

SQL> INSERT INTO EMP

VALUES (3,'Mona', Null, 4000);

3. Insert the records in selected columns. Then the query will be:

SQL> INSERT INTO EMP (name, city)

VALUES ('Mona', 5000);

4. Insert the values in the table 'EMP'. Then the query will be:

SQL> INSERT INTO EMP VALUES ('Nidhi',20,'Clerk',6258,900,9-5-83,

6801,'Chd');

SQL> INSERT INTO EMP VALUES ('Aastha',30,'SaIesman',6388,1500,1-

12- 89, 6587, 'Delhi', 300);

SQL> INSERT INTO EMP VALUES ('Sachin',30,'Salesman',6410,1350,25-1-

92,6587,'Pta',500);

SQL> INSERT INTO EMP VALUES ('Rohit',20,'Manager',6455,2875,27-12-

91,6728,'Nba');

SQL> INSERT INTO EMP VALUES ('Rahul',30,'Salesman',6543,1350,28-5-

87,6587,'Nba',1400);

SQL> INSERT INTO EMP VALUES ('Aditya',30,'Manager',6587,2750,17-8-

86,6728,'Pta');

SQL> INSERT INTO EMP VALUES ('Siddharth',10,'Manager',6671,

2550,29-9- 80,6728,'Chd',Null);

SQL> INSERT INTO EMP VALUES ('Kunar,20,'Analyst',6677,3000,8-12-82,

6455,'Delhi',Null);

SQL> INSERT INTO EMP VALUES ('AkhiP,10,'President',6728,5000,2-11-

85,Null,'DeIhi',NulI);

SQL> INSERT INTO EMP VALUES ('Prathiba',30,'Salesman',6733,1600,4-

6- 85,6587,'Pta',0);

SQL> INSERT INTO EMP VALUES ('Manmeet',20,'Clerk',6765,1050,11-1-

84,6677;'Ldh',Null);

SQL> INSERT INTO EMP VALUES ('Navreet',30,'Clerk',6800,950,25-3-

84,6587,'Pta',Null);

SQL> INSERT INTO EMP VALUES ('Saira',20,'Analyst',6801,3000,15-4-

80,6455,'Chd',Null);

SQL> INSERT INTO EMP VALUES ('Amit',10,'Clerk',6823,1400,25-8-

85,6671,'Ldh',Null);

After inserting, values, the table 'EMP' will look like:

EMP

ENAME DEPTNO JOB EMPNO SAL HIREDATE MGR CITY COMM

Nidhi 20 Clerk 6258 900 9-5-83 6801 Chd

Aastha 30 Salesman 6388 1500 1-12-89 6587 Delhi 300

Sachin 30 Salesman 6410 1350 25-1-92 6587 Pta 500

Rohit 20 Manager 6455 2875 27-12-91 6728 Nba

Rahul 30 Salesman . 6543 1350 28-5-87 6587 Nba 1400

Aditya 30 Manager 6587 2750 17-8-86 6728 Pta

Siddharth 10 Manager 6671 2550 29-9-80 6728 Chd

Kunal 20 Analyst 6677 3000 8-12-82 6455 Delhi

Akhil 10 President 6728 5000 2-11-85 Delhi,

Prathiba 30 : Salesman 6733 1600 4-6-85 6587 Pta 0

Manmeet 20 Clerk 6765 1050 11-1-84 6677 Ldh

Navrget 30 Clerk 6800 950 25-3-84 6587 Pta

Saira 20 Analyst 6801 3000 15-4-80 6455 Chd

Amit 10 Clerk 6823 1400 25-8-85 6671 Ldh

NOTE: (Mostly queries are based on this table 'EMP')

2. Select: Once data in inserted into a table, the next step is to view the data

contained in the table.

• In order to view the data contained in the table, the select statement is used.

• Select statement is a powerful tool and a most commonly used command.

• It is used to retrieve the data from a table in a database.

• We can also use arithmetic operators in select statement (see example 4, 5 and 6

of select statement).

• With the help of select command, one can retrieve information from one column

or more than one column.

• The basic select statement has 6 clauses which are as follows:

Six Clauses of Select Statement

(a) Select: The select clause specifies the table columns that are retrieved. It

always use with 'From Clause'.

Syntax of Select Command:

SQL> SELECT * FROM table_name;

OR

SQL> SELECT column_list FROM table_name

[WHERE Clause]

[GROUP BY Clause]

[HAVING Clause]

[ORDER BY Clause];

(b) From: From clause specifies the table accessed. It is mandatory. It always

use with 'Select Command'.

Syntax of From Clause:

SQL> SELECT.* FROM table_name;

OR

SQL> SELECT column_list FROM table_name

[Where Clause]

[Group By Clause]

[Having Clause]

[Order By Clause];

(c) Where: Where clause is used when we want to retrieve the specific

information from a relation excluding other irrelevant data.

Syntax of Where Clause:

SQL> SELECT column_list FROM table_name

[WHERE Clause];

Examples of'-Select Command', 'From Clause' and 'Where Clause':

1. Display all the information of all the employees from relation 'EMP'. Then the

query will be:

SQL> SELECT * FROM EMP;

Result:

EMP

ENAME DEPTNO JOB EMPNO SAL HIREDATE MGR CITY COMM

Nidhi 20 Clerk 6258 100 9-5-83 6801 Chd

Aastha 30 Salesman 6388 1500 1-12-89 6587 Delhi 300

Sachin 30 Salesman 6410 1350 25-1-92 6587 Pta 500

Rohit 20 Manager 6455 2875 27-12-91 6728 Nba

Rahul 30 Salesman 6543 1350 28-5-87 6587 Nba 1400

Aditya 30 Manager 6587 2750 17-8-86 6728 Pta

Siddharth 10 Manager 6671 2550 29-9-80 6728 Chd

Kunal 20 Analyst 6677 3000 8-12-82 6455 Delhi

Akhil 10 President 6728 5000 2-11-85 Delhi

Prathiba 30 Salesman 6733 1600 4-6-85 6587 Pta 0

Manmeet 20 Clerk 6765 1050 11-1-84 6677 Ldh

Navreet 30 Clerk 6800 950 25-3-84 6587 Pta

Saira 20 Analyst 6801 3000 15-4-80 6455 Chd

Amit 10 Clerk 6823 1400 25-8-85 6671 Ldh

2. Display only the name, job and salary of all the employees from table "EMP”.

Then the query will be;

SQL> Select ENAME, JOB, SAL

From EMP;

Result:

3. Display name, city and salary of employees from relation 'EMP' where salary of

each employee is increased by 1000. Then the query will be:

SQL> SELECT ENAME, CITY, SAL + 1000

FROM EMP;

Result:

4. Display the name and salary of employees whose salary is less than 5000. Then

the query will be:

SQL> SELECT ENAME, SAL from EMP

WHERE SAL <5000;

Result:

5. Display the names of all the employees belonging to the department number 10

from the relation 'BMP'. Then the query will be:

SQL>SELECT ENAME FROM EMP

WHERE DEPTNO = 10;

Result:

ENAME

Siddharth

Akhil

Amit

(d) Order By: The 'Order By Clause' is used with 'Select Statement' to sort the

results either in ascending or descending order. By default, it provides results in

ascending order. We use column values to sort the table. We can use more than one

column to sort the results.

Syntax of Order By Clause:

SQL> SELECT column_list FROM table_name

[ORDER BY Clause];

Examples of Order By Clause:

1. Sort the table 'EMP' by the salary of employees. Then the query will be:

SQL>SELECT ENAME SAL FROM EMP

ORDER BY SAL;

Result:

2. Sort the table 'BMP', by the name and salary of employees. Then the query will be:

SQL>SELECT ENAME SAL FROM EMP

ORDER BY ENAME, SAL;

Result:

(e) Group By: It is used to divide the rows into smaller groups. The 'Group By

Clause' is used with 'Select Statement' to combine a group of rows based on the values of

a particular column or expression. It groups the result after it retrieves the rows from a

table. 'Group functions' can be used with 'Having Clause' and cannot be used with 'Where

Clause'.

Syntax of Group By Clause:

SQL> SELECT column_list FROM table__name

[GROUP BY Clause];

Example of Group By Clause:

To find the total amount of salary spent on each department from the table 'EMP'.

Then the query will be:

SQL>SEI.ECT DEPTNO, SUM (SAL) AS TOTAL SALARY FROM EMP

GROUP BY DEPTNO;

Group within Group: 'Group By Clause' can be used to provide results for 'Groups

Within Groups'. Suppose we want to know the average amount of salary spent on job

type 'Clerk' from department number '20'. We calculate the total amount of salary spent

on each department. This is one group. Then we calculate the average amount of salary

spent on each type of job from that particular department. This is group within group.

Example of Group within Group Clause:

To find the average monthly salary for each job type within department Then the

query will be:

SQL>SELECT DEPTNO, JOB, AVG (SAL) AS AVERAGE SALARY

FROM EMP GROUP BY DEPTNO, JOB;

(f) Having: It is similar to 'Where Clause', but it is used with group functions.

It is used to filter the data. 'Having Clause' can be used with 'Group function' and cannot

be used with 'Where Clause'. It restricts the groups that we return on the basis of group

functions. It is used to specify which groups are to be displayed.

Syntax of Having Clause:

SQL> SELECT column_list FROM table_name

[HAVING Clause];

Example of 'Having Clause:

To find the department who has paid the total salary more than 8.00.6 to its

employees. Then the query will be:

SQL>SELECT DEPTNO, SUM (SAL) AS TOTAL SALARY FROM EMP

GROUP BY DEPTNO

HAVING SUM (SAL)>8000;

(g) Distinct Clause: The 'Distinct Clause' is used with 'Select Statement' to

suppress the duplicate values if any in a column.

Example of 'Distinct Clause':

Display all the different jobs available in the table 'EMP'. Then the query will be:

SQL>SELECT DISTINCT JOB FROM EMP;

Result:

JOB

President

Clerk

Analyst

Salesman

Manager

3. Update

• Update command is used when there is a need to modify the data in a table.

• It is used to update existing records in a table.

• It updates single record or multiple records in a table.

Syntax of Update Command:

SQL> UPDATE table_name

SET column1 = value, column2 = value2,

WHERE some_column = some_value;

Examples of Update Command:

1. To give everybody a commission of Rs. 100 in the table 'EMP'. Then the query

will be:

SQL>UPDATE EMP

SET COMM = 100;

2. Update the Manager's salary to 8000 of department number 10 in the table 'EMP'.

Then the query will be:

SQL>UPDATE EMP

SET SAL = 8000

WHERE JOB = 'Manager' AND DEPTNO = 10;

4. Delete

• It deletes one or more records from a table and sends it to recycle.

• It doesn't release the memory occupied by the records of the table. Data can be

recovered.

• If any subset is defined with condition, then specific records or rows, are deleted,

otherwise all records are deleted.

• Executing a delete command may cause triggers to rum which may cause

deletion in other tables.

• Example: Sometimes two tables are linked by the foreign key. If we delete rows

in one table, then we have to delete those rows from the second table to maintain

the referential integrity.

Syntax of Delete Command:

SQL> DELETE FROM table_name [where condition];

OR

SQL> DELETE from table_name;

Examples of Delete Command:

1. Delete all the records of 'Manager' from the table 'EMP'. Then the query will be:

SQL>DELETE FROM EMP

WHERE JOB = 'Manager';

2. Delete all the records from the table 'EMP'. Then the query will be:

 SQL>DELETE FROM EMP;

Q10. Explain DCL (Data Control Language) commands in detail with suitable

examples.

• It is used to control access to data in a database. It also controls the security of the

database.

• To control data in a database, privileges are given to user to access the data

without any problem and with proper security.

• It basically provides security to database. Without privileges, no one can access

the database.

• A user can access the database according to the privileges given to him.

The following are the various DCL commands:

Parts of DCL

(a) Grant: It is used to give the permission to the user for restricted access to the

database. It allows specified users to perform specified tasks.

(b) Revoke: It is used to cancel the previously granted or denied permissions to the

users.

(c) Deny: It disallows the specified users from performing specified tasks.

Q11. Explain TCL (Transaction Control Language) commands in detail with

suitable examples.

• TCL is used to manage the changes made by DML (data manipulation language)

statements.

• These commands are used for revoking the transactions and to make the data

commit to the database.

• Basically, it is used to manage the different transactions occurring within a

database.

• Each transaction is completely isolated from other active transactions.

• User can make changes in the particular transaction in database with the

transaction control language.

• At the end of the transaction, the database can make all the changes permanent in

the database or undoes them all.

• If any problem fails in the middle of a transaction, then the database rolls back

the transaction and restore the database into its former state.

• The following are the various TCL commands:

Parts of TCL

(a) Commit

• Commit command is used to save work done. The changes made in the database

by the user are not visible to other users until they become permanent in the

database.

• Commit command is used to permanent any changes made to the database during

the current transaction by the user.

• Commit command is used to save all the changes made to the database since the

last commit or rollback command.

Syntax of Commit Command:

SQL> COMMIT;

Example of Commit Command:

To delete the records of the employees permanently, belonging to the city 'Chd'.

SQL>DELETE FROM EMP

WHERE CITY = 'Chd';

SQL>COMMIT;

(b) Rollback

• It is used to restore the database to its original state since the last 'commit'.

• It is the inverse of the commit statement.

• It is used to undo the transactions that have not already been saved to the

database.

• Oracle provides a facility to-roll back to the last committed state.

Example: We are performing the operations on the database and some problem occurs

into the computer system. Yet we have not performed the commit statement, and then

rollback command helps to come back to the last committed state.

Syntax of Rollback Command:

SQL> ROLLBACK;

(c) Savepoint

• Savepoint command is used to identify a point in a transaction from which we

can later rollback.

• The Savepoint statement defines a Savepoint within a transaction.

• It is a special mark inside a transaction that allows all commands that are

executed after it was established to be rolled back, restoring the transaction state

to what it was at the time of Savepoint.

• Changes made after a Savepoint can be undone at any time prior to the end of the

transaction.

• A transaction can have multiple savepoints.

Syntax of Savepoint Command:

SQL> SAVEPOINT<savepoint name>;

(d) Set Transaction

● Set transaction command has no effect on any subsequent transactions.

● It is used to set the characteristics of the current transaction.

● This command is helpful to determine whether the transaction is read/write or

read only.

● If a transaction is read only, then the insert, update, delete and copy commands

are disallowed.

Q12. Discuss SQL Operators in detail with suitable examples.

• SQL supports a wide variety of operators. These operators are extensively used in

SQL statements used by the user for the purpose of issuing a query to the

database.

• The operators are mainly used in the Where clause, Having clause to filter the

data to be selected.

• An operator is a symbol which is used to manipulate the data items (operands).

Types of Operators

• Operators are represented by keywords or by special characters.

On the basis-of operands, there are two types-of operators:

Unary Operator: An unary, operator operates on only one operand.

Format  operator operand.

Binary Operator: A binary operator operates on two operands.

Format  operand1 operator operand 2

The following are the various SQL operators:

Types of SQL Operators

Arithmetic Operator

• An arithmetic operator is used to add, subtract, multiply and divide the numeric

values in an expression.

• It is used to perform the mathematical operations on one or more data items or

operands of numeric data type.

• It also provides results in numeric values.

Sr. No. Arithmetic Operator Description

1 + Used for addition in SQL

2 - Used for subtraction in SQL

3 / Used for division in SQL

4 * Used for multiplication in SQL

Examples of Arithmetic Operator:

1. Add

Add Rs.500 in the employee's salary whose EMPNO is 6258 from the relation

'EMP'. Then the query will be:

SQL> SELECT SAL, SAL+500 FROM EMP

WHERE EMPNO = 6258;

Result:

SAL SAL + 500

900 1400

2. Subtract

Subtract the employee's commission from his salary whose EMPNO is 6388. Then the

query will be:

SQL> SELECT SAL, SAL-COMM FROM EMP

WHERE EMPNO = 6388;

Result:

SAL SAL-COMM

1500 1200

3. Multiply

Multiply the salary of employee by 100 whose EMPNO is 6258 from the relation

'EMP'. Then the query will be:

SQL> SELECT SAL, SAL* 100 FROM EMP

WHERE EMPNO = 6258;

Result:

SAL SAL * 100

900 90000

Comparison Operator

• A comparison operator is used to compare the column data with specific values

with the other column data values.

• It is also used along with the Select Statement to filter data based on specific

conditions.

Sr.

No.

Comparison

Operator

Description

1 = Equal to

2 != OR o Not equal to

3 < Less than

4 > Greater than

5 <= Less than or equal to

6 >= Greater than or equal to

7 LIKE Performs pattern matching from columns.

The LIKE operator is- used only with Char and match

a pattern.

% represents sequence of zero or more character.

8 IN To check a value within a set. It is used to compare a

column with more than one value.

9 BETWEEN To check value within a range. It is used to compare

data for a range of value.

10 ANY To check whether one or more rows in the result set of

a sub query meet the specified, condition

11 ALL To check whether all rows in the result set of a sub

query meet the specified condition.

12 EXISTS To check whether a sub query returns any result.

Example of Equal to (=) Operator:

Display the records of the employees, who live in city 'Chd', from the relation

'EMP'. Then the query will be:

SQL> SELECT * FROM EMP

 WHERE CITY = 'Chd';

Result:

ENAME DEPTNO JOB EMPNO SAL HIREDATE MGR CITY

Nidhi 20 Clerk 6258 900 9-5-83 6801 Chd

Siddharth 10 Manager 6671 2550 29-9-80 6728 Chd

Saira 20 Analyst 6801 3000 15-4-80 6455 Chd

Example of Not Equal to (!= OR <>) Operator:

Display the records of the employees, whose city is not equal to 'Chd', from the

relation 'EMP'. Then the query will be:

SQL> SELECT * FROM EMP

 WHERE CITY! = 'Chd';

Result:

ENAM

E

DEPTN

O

JOB EMPN

O

SA

L

HIREDAT

E

MG

R

CIT

Y

COM

M

Aastha 30 Salesma

n

6388 150

0

1-12-89 6587 Delhi 300

Sacliin 30 Salesma

n

6410 135

0

25-1-92 6587 Pta 500

Rohit 20 Manage

r

l3455 287

5

27-12-91 6728 Nba

Rahul 50 Salesma

n

6543 135

0

28-5-87 6587 Nba_ 1400

Aditya 30 Manage

r

6587 275

0

17-8-86 6728 Pta

Kunal 20 Analyst 6677 300

0

842-82 6455 Delhi

Akhil 10 Presiden

t

6728 500

0

2-11-85 Delhi

Prathiba 30 Salesma

n

6733 160

0

4-6-85 6587 Pta 0

Manme

et

20 Clerk 6765 105

0

114-84 6677 Ldh

Navreet 30 Clerk 6800 950 25-3-84 6587 Pta

Amit 10 Clerk 6823 . 140

0

25-8-85 6671 Ldh

11 rows selected

Example of Less than (<) Operator:

Display the name of the employees, whose salary is less than '1400', from the table

'EMP'. Then the query will be:

SQL> SELECT ENAME FROM EMP

 WHERE SAL = 1400'

Result:

ENAME

Nidhi

Sachin

Rahul

Nanmeet

Naureet

Example of Greater than (>) Operator:

Display the name of the employees, whose salary is greater than '1400', from the

table 'EMP'. Then the query will be:

SQL> SELECT ENAME FROM EMP

WHERE SAI>1400;

Result:

ENAME

Nidhi

Sachin

Rahul

Manmeet

Navreet

Amit

6 rows selected.

Example of Less than or equal to (<=) Operator:

Display the name of the employees, whose salary is less than or equal to '1400',

from the table 'EMP'. Then the query will be:

SQL> SELECT ENAME FROM EMP

WHERE SAL< =1400;

Result:

ENAME

Nidhi

Sachin

Rahul

Manmeet

Navreet

Amit

6 rows selected.

Example of Greater than (>=) Operator:

Display the name of the employees, whose salary is greater than or equal to '1400',

the table 'EMP'. Then the query will be:

SQL> SELECT ENAME FROM EMP

WHERE SAL< =1400;

Result:

ENAME

Aastha

Rohit

Aditya

Siddharth

Kunal

Akhil

Prathiba

Saira

Amit

9 rows selected.

Examples of LIKE Operator:

1. Display the employees whose name start with 'S' from the table 'EMP'. Then the

query will be:

SQL> SELECT ENAME FROM EMP

 WHERE ENAME LIKE 'S%';

Result:

ENAME

Sachin

Siddharth

Saira

2. Display the employees, whose name ends with 'S', from the table 'EMP'. Then the

query will be:

SQL> SELECT ENAME FROM EMP

WHERE ENAME LIKE '%S';

Result:

NO ROW SELECTED.

• Display the employees, where 'S' is in the middle of the name, from the

Table 'EMP'.

Then the query will be:

SQL> SELECT ENAME FROM EMP

WHERE ENAME LIKE '%S%';

Result:

ENAME

Aastha

Example of IN Operator:

Display the names of the employees, who are analyst and clerk, from the table

'EMP'. Then the query will be:

SQL>SELECT ENAME FROM EMP

WHERE JOB IN ('Analyst', 'Clerk');

Result:

ENAME

Nidhi

Kunal

Manmeet

Navreet

Saira

Amit

6 rows selected.

Example of BETWEEN Operator:

Display the name and salary of all employees, whose salary is between 2000 and

3000, from the table 'EMP'. Then the query will be:

SQL>SELECT ENAME, SAL FROM EMP

WHERE SAL BETWEEN 2000 AND 3000;

Result:

ENAME SAL

Rohit 2875

Aditya 2750

Siddharth 2550

Kunal 3000

Saira 3000

Logical Operator

• Logical operators compare two or more than two conditions at a time to

determine whether a row can be selected for the output.

• When retrieving data using a Select Statement, we use logical operators in the

Where Clause which allows us to combine more than one condition.

Sr.

No.

Logical Operator Description

1 AND For the row to be selected all the specified conditions

must be true.

2 OR For the row to be selected at least one of the specified

conditions must be true.

3 NOT For the row to be selected, the specified conditions must

be false.

● NOT is totally opposite of AND and OR operator. When we want to find those

rows that do not satisfy a condition, then we use the NOT operator.

1. Examples of AND Operator:

● To find the names of the clerks from the table "EMP" who are working in the

department number 20, then the query will be:

SQL> SELECT ENAME FROM EMP

 WHERE NOB = 'CLERK' AND DEPTNO = 20;

Result:

ENAHE

Nidhi

Manmeet

● To find the Ename, Sal, Job from the table "EMP" where salary is greater than

1500 and deptno is 30, then the query will be:

SQL> SELECT ENAME, SAL, JOB FROM EMP

WHERE SAL>1500 AND DEPTNO = 30;

Result:

 ENAME SAL JOB

Rohit 2175/Manager

Aditya 2758 Manager

Prathiba 1600 Salesman

● To find all the information of the employee's from the table "EMP" whose job is

manager and deptno is 10, then the query will be:

SQL> SELECT * FROM EMP

WHERE JOB = 'Manager' AND DEPTNO = 10;

Result:

ENAME DEPTON JOB EMPNO SAL HIREDATE MGR CITY

Siddharth 10 Manager 6671 2550 29-9-80 6728 Chd

2. Examples of OR Operator:

• To find the names of the employees from the table "EMP", who are analysts and

clerk, then the query will be:

SQL> SELECT ENAME FROM EMP

WHERE JOB = -'Analyst' OR JOB = 'CIerk';

Result:

ENAME

Nidhi

Kunal

Navreet

Saira

Amit

6 rows selected.

• Display the Ename, Empno from the table "EMP", whose job is clerk or deptno is

10, then the query will be:

SQL> SELECT ENAME, EMPNO FROM EMP

WHERE JOB = 'Clerk' .OR DEPTNO = 10;

Result:

ENAME EMPNO

Nidhi 6258

Siddharth 6671

Akhil 6728

Manmeet 6765

Navreet 6888

Amit 6823

6 rows selected.

3. NOT

• Display the names of the employees from the table "EMP", who are not clerks,

then the query will be:

SQL> SELECT ENAME FROM EMP

WHERE JOB <> 'Clerk';

OR

SQL> SELECT ENAME FROM EMP

WHERE JOB! = 'Clerk';

Result:

ENAME

Aastha

Sachin

Rohit

Rahul

Aditya

Siddharth

Kunal

Akhil

Prathiba

Saira

10 rows selected.

• Display the name and deptno of employees from the table "EMP", who are not

belonging to deptno 10 or 20, then the query will be:

SQL> SELECT ENAME, DEPTNO FROM EMP

WHERE NOT (DEPTNO = 10 OR DEPTNO = 20);

Result:

ENAME DEPTNO

Aastha 30

Sachin 30

Rohit 30

Rahul 30

Aditya 30

Prathiba 30

Navreet 30

7 rows selected.

Set Operator

• Set operators are used to combine the results from two or more Select statements.

• The result of each Select Statement can be treated as a SET. Set operators are

applied on these SETS to achieve the final result.

• Set operators follow some rules which are as follows:

• Number of columns should be in exact same order in all the queries.

• Number of columns should be same in all the queries.

• Data types of retrieved columns (selected statements) should be matched.

UNION ALL

SELECT Column List FROM Table2;

Example of Union All Operator:

Display all the jobs in department 10 and 20 from the table 'EMP'. Then the query

will be:

SQL> SELECT JOB FROM EMP

WHERE DEPTNO = 10

UNION ALL

SELECT JOB FROM EMP

WHERE DEPTNO = 20;

Result:

JOB

Manager

President

Clerk

Clerk

Analyst

Clerk

Analyst

7 rows selected.

NOTE: Union operator provides results with automatically removal of duplicate values

whereas Union All operator provides results without removal of any duplicate value.

3. Intersect

Intersect operator combine the two table expressions into one and return a result

set which consists of rows that appear in the results of both table expressions. It also

removes all the duplicate rows from the result set.

Syntax of Intersect Operator:-

SQL> SELECT Column List FROM Table 1

INTERSECT

SELECT Column List FROM Table2;

Example of Intersect Operator:

Display all the jobs common in department 10 and 20 from the table 'EMP'. Then

the query will be:

SQL> SELECT JOB FROM EMP

WHERE DEPTNO = 10

INTERSECT

SELECT JOB FROM EMP

WHERE DEPTNO = 20;

Syntax: ->

SQL><SELECT STATEMENT><SET OPERATOR>< SELECT STATEMENT >

<ORDER BY Clause>;

Sr.

No.

Set

Operator

Description

1 Union Returns all distinct rows selected by either query, excluding all

duplicate rows.

2 Union All Returns all rows selected by either query, including all duplicate

rows.

3 Intersect Returns all distinct rows selected by both queries.

4 Minus Returns all distinct rows selected by the first query but not the

second.

1. Union

It combines the results of two queries (same number of columns and compatible

data types) into a single table of all matching rows. Union automatically removes all the

duplicate values.

Syntax of Union Operator:

 SQL> SELECT Column List FROM Table1

UNION

SELECT Column List FROM Table2;

Example of Union Operator:

• Display the different jobs in department 10 and 20 from the table 'EMP'. Then the

query will be:

SQL> SELECT JOB FROM EMP

WHERE DEPTNO = 10

UNION

SELECT JOB FROM EMP

WHERE DEPTNO = 20;

Result:

JOB

Analyst

Clerk

Manager

President

2. Union All

It combines the results of two queries (same number of columns and compatible

data types) into a single table of all matching rows. It includes (shows) all the duplicate

values.

Syntax of Union All Operator:

SQL> SELECT Column List FROM Table1

Result:

JOB

Clerk

4. Minus

It compares each record in statement1 with a record in statement2. It returns the

results with the records in statement1 that are not in statement2.

Rows retrieved by the second query are subtracted from the rows retrieved by the

first query. Only those records are considered as a result which are present only in

statement1 and not in statement2.

Syntax of Minus Operator:-

SQL> SELECT Column List FROM Table1

MINUS

SELECT Column List FROM Table2;

Example of Minus Operator:

Display all the unique jobs in the department 10 from the table 'EMP'. Then the

query will be:

SQL> SELECT JOB FROM EMP

WHERE DEPTNO = 10

MINUS

SELECT JOB FROM EMP

WHERE DEPTNO = 20

MINUS

SELECT JOB FROM EMP

WHERE DEPTNO = 30;

Result: JOB

President

Concatenation Operator

• Concatenation operator is used to combine the two or more data strings.

• The operands of the concatenation must be compatible strings.

• Character string cannot be concatenated with a binary string.

• Concat and vertical bars (..) both represent the concatenation operator.

Concatenation Operator Description

Piping Operator (...) It is used to combine two or more strings

Examples of Concatenation Operator:

• List the employee salary whose empno is 6728. Then the query will he:

SQL> Select 'My Salary is =' Sal as Salary

From EMP Where Empno = 6728.

Result: My Salary is 5000.

• List the employee name whose empno is 6728. Then the query will be:

SQL> Select 'My Name is =' ... Ename as Name

From EMP Where Empno = 6728.

Result: My Name is Akhil.

Q13. Explain SQL functions in detail with suitable examples.

SQL Functions

Single Row Functions

Single row functions operate on single rows only and returns one result per row.

The types of single row functions are as follows:

Single Row Functions

1. Character Functions

• It is also known as text functions.

• It is used to manipulate text strings.

• It accepts character input only and returns either character or numeric values.

The following are the types of character functions:

(a) LOWER (string): It converts uppercase or mixed case character strings into

lowercase character strings.

Example: SQL>SELECT LOWER (JOB) FROM EMP;

Result:

LOWER(JOB)

clerk

salesman

salesman

manager

salesman

manager

manager

analyst

president

salesman

clerk

LOWER(JOB)

clerk

analyst

clerk

14 rows selected.

(b) UPPER (string): It converts lowercase or mixed case character strings into

uppercase character strings.

Example: SQL>SELECT UPPER (JOB) FROM EMP;

Result:

UPPER(JOB)

CLERK

SALESMAN

SALESMAN

MANAGER

SALESMAN

MANAGER

MANAGER

ANALVST

PRESIDENT

SALESMAN

CLERK

UPPER(JOB)

CLERK

ANALVST

CLERK

14 rows selected.

(c) CONCAT (string1, string2): It is equivalent to the concatenation operator. It

returns string1 concatenated with string2. It joins (combines) two string values together.

Example: SQL>SELECT CONCAT ('MONIKA', 'TATHAK') FROM DUAL;

Result: MONIKA PATHAK

(d) LENGTH (string): It is used to get the length of a string as a numeric value.

Example: SQL>SELECT LENGTH (Akhil) FROM DUAL;

Result: 5

(e) ASCII (string): It is used to return the decimal representation of the first byte of

string in the database character set.

Example: SQL> ASCII (Amit) FROM DUAL;

Result: 65

2. Number Functions

● It is used to perform operations on numbers.

● It accepts numeric input, only and returns numeric values.

The following are the types of numeric functions:

(a) ABS (n): It returns absolute value of numeric value.

Example: SQL>SELECT ABS (-29) FROM DUAL;

Result: 29

(b) CEIL (n): It returns the next smallest integer greater than or equal to parameter

passed to n.

Example: SQL>SELECT CEIL (29.8) FROM DUAL;

Result: 30

(c) FLOOR (n): It returns the largest integer value less than or equal to parameter

passed to n.

Example: SQL>SELECT FLOOR (29.8) FROM DUAL;

Result: 29

(d) MOD (m,n): It returns the remainder of m divided by n. It returns m if n is 0.

Example: SQL>SELECT MOD (16,3) FROM DUAL;

Result: 1

(e) SQRT (n): It returns the square root of n. The value of n cannot be negative.

Example: SQL>SELECT SQRT (25) ;FROM DUAL;

Result: 5

3. Date Functions

● Date functions operate on values of the Date datatype.

● It takes values of Date datatype as input and return values of Date datatype as

output, except the Months_Between function, which returns a number.

The following are the types of date functions:

(a) SYSDATE: It returns the current system date and time on our local database.

Example: SQL>SELECT SYSDATE FROM DUAL;

Result:

SYSDATE

18-JUN-15

(b) LAST_DAY: It returns the date of the last day of the month specified.

Example: SQL>SELECT SYSDATE LAST DAY (SYSDATE) FROM DUAL;

(c) CURRENT_DATE: It returns the current date in the Gregorian calendar for the

session's time zone.

Example: SQL>SELECT SYSDATE CURRENT DAY (SYSDATE) FROM DUAL;

(d) NEXT_DAY: It returns the date of next specified day of the week after the 'date'.

Example: SQL>SELECT SYSDATE NEXT DAY (SYSDATE) FROM DUAL;

(e) ADD_MONTHS: It adds or subtracts the months to or from a date.

Example: SQL>SELECT SYSDATE, ADD_MONTHS (SYSDATE, 4) FROM DUAL;

Result:

SYSDATE ADD_MONTH

18-JUN-15 18-OCT-15

4. Conversion Functions

It converts the value from one form to another form.

The following are the types of conversion functions:

(a) Implicit Data Type Conversion: It occurs when the expression evaluator

automatically converts the data from one data type to another.

(b) Explicit Data Type Conversion: It occurs when we explicitly converts the data

from one data type to another.

5. Miscellaneous Functions

The following are the types of miscellaneous functions:

(a) GREATEST: It returns the greatest value in the list of expressions.

Example: SQL>SELECT GREATEST (2, 11, 25, 29) FROM DUAL;

Result: 29

(b) LEAST: It returns the smallest value in the list of expressions.

Example: SQL>SELECT LEAST (2, 11, 25, 29) FROM DUAL;

Result: 2

(c) USER: It returns the username of the current user logged on.

Example: SQL>SELECT USER FROM DUAL;

Result: SCOTT

Group/Aggregate Functions

• Aggregate functions are also known as Group functions or Summary functions.

• SQL supports the functions which can be used to select and compute the

numeric, date columns and characters of the relation.

• These functions operate on multiple rows (group of rows) and return only one

value for a group or table, therefore these functions are known as aggregate

functions. By default, all rows are treated as one group in a table.

The types of aggregate functions are as follows:

Group/Aggregate Functions

STUD

Name Class Roll Number Marks Age

Akhil C12 11 95 16

Monika C12- 12 91 15

Aastha M12 13 95 14

Rohit E12 14 94 12

Rahul E12 15 93 13

Ankush C12 16 95 15

Radhika M12 17 92 14

1. Avg: The Avg (average) function returns the arithmetic mean of the value of a

column in a given relation. This function is applicable on numeric values.

Examples of Avg Function:->

• To find the average marks of the students from the table STUD, then the query

will be:

SQL> SELECT AVG (Marks) FROM STUD;

Result: 93.51

● To find the average salary of the employees from the table EMR Then the query

will be:

SQL> Select AVG (SAL) AS Average Salary FROM EMP;

Result: Average Salary

2091.07143

2. Count: The Count function returns the number of rows in a relation (table). This

function is used for numeric, character values and date. The Count function returns value

only if it satisfies the condition stated in the Where Clause.

Examples of Count Function:

● To find the number of students from the table 'STUD'. Then the query will be:

SQL> Select COUNT (*) FROM STUD;

Result: 7

● To find the total number of employees from the table EMP, Then the query will

be:

SQL> SELECT %COUNT (*) AS TOTAL EMPLOYEE FROM EMP;

Result: TOTAL EMPLOYEE

14

3. Max: The Max function returns the maximum of the values of a column from the

given relation.

Examples of Max Function:

• To find the maximum marks from the table 'STUD'. Then the query will be:

SQL> MAX (Marks) FROM STUD;

Result: 95

• To find the maximum salary drawn by the employee from the table EMP. Then

the query will be:

SQL> MAX (SAL) AS Maximum Salary FROM EMP;

Result: Maximum Salary

5000

4. Min: The Min function returns the minimum of the values of a column from the

given relation.

Examples of Min Function:

• To find the minimum marks from the table STUD. Then the query will be:

SQL> MIN (Marks) FROM STUD;

Result: 91

• To find the minimum salary drawn by the employee from the table EMP. Then

the query will be:

SQL> MIN (SAL) AS Minimum Salary FROM EMP;

Result: Minimum Salary

900

5. Sum: The Sum function returns the sum of values (numeric type) of a column.

Example of Sum Function:

• To find the sum of marks from the table STUD. Then the query will be:

SQL> SELECT SUM (Marks) FROM STUD;

Result: 655

• To find the total salary given to the employees from the table BMP. Then the

query will be:

SQL> SELECT SUM (SAL) AS Total Salary FROM EMP;

Result: Total Salary

29275

Q14. Explain SQL joins in detail with suitable examples.

● Mostly we retrieve data from one table at a time. But what will we do if we need

to retrieve data from multiple tables.

● Oracle provides the facility to retrieve the data from multiple tables with the

help of joins.

● Joins are used to combine columns from different tables.

● Joins allow us to retrieve the data from multiple users in a single query.

● Joins permits us to select data from more than one table in one SQL statement

(query).

● A join is used to combine rows from multiple tables.

● Joins are used to relate information in different tables.

● The connection between tables is established through the Where Clause.

● Where Clause is known as join condition.

● The rows retrieved after joining the two tables based on a condition in which

one table act as a primary key and other act as a foreign key. Columns in both

tables should be matched.

Syntax of Join:

SQL> SELECT tablel.column, table2.column,tableN.column

FROM table1, table2,tableN.

WHERE tablel.column1 = table2. column2;

Types of Join

Equi Join

● It is also known as Inner Join.

● When two tables are joined together using equality of values in one or more

columns, they make an equi join.

● Equi join is used when we need to compare each record in two joined tables and

comes with matching record.

● Table prefixes are utilized to prevent ambiguity.

● We use equi join (inner join) when we only want to return records where there is

at least one row in both tables that match the join condition.

● Equi join uses the equal sign as the comparison operator.

Example of Equi Join:

First Table is BMP

Second Table is DEPT.

EMP

ENAME DEPTN

O

JOB EMPN

O

SAL HIREDAT

E

MG

R

CIT

Y

COM

M

Nidhi 20 Clerk 6258 900 9-5-83 6801 Chd

Aastha 30 Salesma

n

6388 150

0

1-12-89 6587 Delhi 300

Sachin 30 Salesma

n

6410 135

0

25-1-92 6587 Pta 500

Rohit 20 Manager 6455 287

5

27-12-91 6728 Nba

Rahul 30 Salesma

n

6543 135

0

28-5-87 6587 Nba 1400

Aditya 30 Manager 6587 275

0

17-8-86 672S Pta

Siddhart

h

10 Manager 6671 255

0

29-9-80 6728 Chd

Kunal 20 Analyst 6677 300

0

8-12-82 6455 Delhi

Akhil 10 President 6728 500

0

2-11-85 Delhi

Prathiba 30 Salesma

n

6733 160

0

4-6-85 6587 Pta 0

Manmeet 20 Clerk 6765 105

0

11-1-84 6677 Ldh

Navreet 30 Clerk 6800 950 25-3-84 6587 Pta

Saira 20 Analyst 6801 300

0

15-4-80 6455 Chd

Amit 10 Clerk 6823 140

0

25-8-85 6671 Ldh

DEPT

DEPTNO DNAME LOG

10 Sales London

20 Operation Mumbai

30 Research Paris

40 Accounting New York

Then the query will be:

SQL> SELECT EMPNO, ENAME, EMP.DEPTNO, DNAME FROM EMP,

DEPT WHERE EMP.DEPTNO = DEPT.DEPTNO;

Result:

Explanation of Equi Join:

For Equi Join, both the table names should be mentioned.

Column name should be specified with the table name to avoid confusion.

Deptno of BMP table is joined with the deptno of DEPT table because Deptno

exists in both the tables.

Cross Join

● It is also known as cartesian product or cartesian join.

● It returns the number of rows equal to the product of all rows in all rows in all the

tables being joined.

● It provides results in mXn rows.

● It is used when we want to join every row of a table to every row of itself.

Example of Cross Join:

SQL>SELECT EMPNO, ENAME, DNAME, LOC FROM EMP, DEPT;

Result:

Explanation:

Table BMP has 14 rows.

Table DEPT has 4 rows.

Then, total number of rows = mXn

=14X4

=> Total number of rows =56 rows

Outer Join

● Outer join has symbol (+).

● It is used if there is any value in one table that do not have corresponding value in

other table. Such rows are forcefully selected by it.

● It is used on one side of the join condition only and the corresponding columns for

that row will have NULL value.

Example of Outer Join:

SQL>SELECT EMPNO, ENAME, E-MP.DEPTNO, DNAME, LOC FROM

EMP,DEPT

WHERE EMP.DEPTNQ (+) = DEPT.DEPTNO;

Result:

EMPNO ENAME DEPTNO DNAME LOC

6258 Nidhi 20 Operation Mumbai

6388 Aastha 30 Research Paris

6410 Sachin 30 Research Paris

6455 Rohit 30 Research Paris

6543 Rahul 30 Research Paris

6587 Aditya 30 Research Paris

6671 Siddharth 10 Sale Paris

6677 Kunal 20 Research Paris

6728 Akhil 10 Sale London

6733 Prathiba 30 Research Mumbai

6765 Manmeet 20 Operation London

6800 Navreet 30 Research Paris

6801 Saira 20 Operation Mumbai

6823 Amit 10 Sale London

Self Join

● Self join is used when a table is joined/compared to itself.

● A table is joined to itself means each row of the table is combined with itself and

with every row of the table.

● If we want to use self join, then we need to open the two copies of same table by

using table aliases

● Table name aliases are defined in the From Clause of the query.

● Table alias is used to avoid confusion among two same tables.

Example of Self Join:

SQL>SELECT WORKER.ENAME AS ENAME, MANAGER.ENAME AS

MANAGER

FROM EMP WORKER, EMP MANGER

WHERE WORKER.MGR = MANAGER.EMPNO;

