BCA-7-02T: Optimization Techniques

Total Marks: 100 External Marks: 70 Internal Marks: 30 Credits: 6 Pass Percentage: 40%

INSTRUCTIONS FOR THE PAPER SETTER/EXAMINER

- 1. The syllabus prescribed should be strictly adhered to.
- 2. The question paper will consist of three sections: A, B, and C. Sections A and B will have four questions from the respective sections of the syllabus and will carry 10 marks each. The candidates will attempt two questions from each section.
- 3. Section C will have fifteen short answer questions covering the entire syllabus. Each question will carry 3 marks. Candidates will attempt any ten questions from this section.
- 4. The examiner shall give a clear instruction to the candidates to attempt questions only at one place and only once. Second or subsequent attempts, unless the earlier ones have been crossed out, shall not be evaluated.
- 5. The duration of each paper will be three hours.

INSTRUCTIONS FOR THE CANDIDATES

Candidates are required to attempt any two questions each from the sections A and B of the question paper and any ten short questions from Section C. They have to attempt questions only at one place and only once. Second or subsequent attempts, unless the earlier ones have been crossed out, shall not be evaluated.

Course: Optimization Techniques				
Course Code: BCA-7-02T				
Course Outcomes (COs)				
After the completion of this course, the students will be able to:				
CO1	Define and explain optimization problems in various domains.			
CO2	Analyze the optimality criteria for various optimization techniques.			
CO3	Translate practical problems into mathematical expressions for optimization.			
CO4	Understand the concepts of Genetic programming.			
CO5	Analyze optimization methods based on the behavior of biological and swarm of			
	insects.			

Detailed Contents:

Module	Module Name	Module Contents		
Section-A				
Module 1	Optimization Models	OR models, solving the OR Model, Introduction		
		to Linear Programming, two-variable LP model,		
		Graphical LP Solution, Graphical sensitivity		

		Analysis, Simplex Method, Big M Method, Two		
		Phase Method, Special cases in Simplex Method Application.		
Module II	Duality and Sensitivity Analysis	Definition of the Dual problem, Primal dual relationship, Additional Simplex Algorithm for LP, Post optimal or Sensitivity Analysis. Transportation Model, Transportation Algorithm, Assignment Model.		
Module III	Networks Models	Definition, Minimum spanning trees algorithms, Shortest Route Problem, Maximum flow Model, Minimum Cost Capacitors flow problem, PERT & CPM.		
Section-B				
Module IV	Non-Linear Programming	Unconstrained Algorithms, Direct search Method, Gradient Method, Constrained Algorithm, Separable programming, Quadratic Programming, Geometric Programming		
Module V	Intelligent Optimization	Introduction to Intelligent Optimization, Optimization methods based on the behavior of biological and swarm of insects, Genetic Algorithm, Simulated Annealing Algorithm, Particle Swarm Optimization (PSO)		
Module VI	Genetic Algorithm	Genetic Algorithm: Types of reproduction operators, crossover & mutation, Genetic Programming (GP): Principles of genetic programming, terminal sets, functional sets, differences between GA & GP, random population generation, solving differential equations using GP.		

Books

1. S. S. Rao, "Engineering Optimization: Theory and Practice", Wiley, 2008.

2. K. Deb, "Optimization for Engineering design algorithms and Examples", Prentice Hall, 2nd edition 2012.

3. C.J. Ray, "Optimum Design of Mechanical Elements", Wiley, 2007.

4. R. Saravanan, "Manufacturing Optimization through Intelligent Techniques", Taylor & Francis Publications, 2006.

5. D. E. Goldberg, "Genetic algorithms in Search, Optimization, and Machine Learning", Addison-Wesley Longman Publishing, 1989