DSDP-2-02T: Data Structures

Total Marks: 100 External Marks: 70 Internal Marks: 30 Credits: 4 Pass Percentage: 40%

Course: Data Structures			
Course Code: DSDP-2-02T			
Course Outcomes (COs)			
After the completion of this course, the students will be able to:			
CO1	Understand basic data structures such as arrays, linked lists, stacks and queues.		
CO2	Understand non-linear data structures like trees and graphs.		
CO3	Apply stack for evaluation of arithmetic expressions, and conversion from infix to post		
	fix and recursion.		
CO4	Apply Algorithm for solving problems like sorting, searching, insertion and deletion of		
	data.		
CO5	Design algorithm in context of space and time complexity and apply asymptotic		
	notation.		

Detailed Contents:

Module	Module Name	Module Contents
Module 1	Introduction to Data	Introduction to data structure and algorithm,
	Structures	various phases of algorithms, Pointers, working
		with pointers, pointers and function, structure,
		union, classification of data structures Algorithm
		analysis: Time space trade off algorithms and Big
		O notation.
Module II	Arrays and Linked Lists	Arrays: Introduction, one dimensional and
		multidimensional arrays, memory representation
		of arrays, operations on arrays, sparse arrays and
		sparse matrices and their implementation,
		Advantages and limitation of arrays.
		Linked List: Introduction; operation on linked
		list, circular linked list, doubly linked list, header
		linked list, implementation of linked list,
		application of linked lists.
Module III	Stacks & Queues	Stacks: Introduction; array representation of
		stacks, Operation on stacks; Linked
		representation of stacks, Application of stacks:
		matching parenthesis, evaluation of arithmetic
		expressions, and conversion from infix to post fix,
		recursion.
		Queues: Introduction, operation on queues,

		linked representation of queue, Applications of queues, circular queue, memory representation of queues, priority queues, Multiple queues.
Module IV	Trees, Graphs and	Trees: Introduction; Binary Tree; Complete
	searching & Sorting	Binary Trees, representation of binary trees in the
	Algorithms	memory, traversing a binary tree, Binary Search
		Tree, Operations on Binary Search Tree.
		Graphs: Introduction Graph: Graph terminology,
		Memory Representation of Graphs: adjacency
		matrix representation of graphs, adjacency list or
		linked representation of graphs, graph traversal
		algorithms.
		Searching & Sorting Algorithms: Linear
		Search, Binary Search, Bubble Sort, Selection
		Sort, Insertion Sort

Books

- 1. A. Tanenbaum, Y. Lanhgsamand A. J. Augenstein, "Data Structures Using C", PHI.
- 2. Loomis, Marry, "Data Management and File Structures", PHI
- 3. Seymour Lipschultz, "Theory and Practice of Data Structures", Tata McGraw-Hill.
- 4. E. Horowitz and S. Sahni, "Data Structures with Pascal", Galgotia.
- 5. M. J. Folk, B. Zoellick, G Riccardi, "File Structures", Pearson Education.