

The Motto of the University

(SEWA)

SKILL ENHANCEMENT EMPLOYABILITY WISDOM

 ACCESSIBILITY

DIPLOMA IN MOBILE APPLICATION DEVELOPMENT (DMAD)

 SEMESTER-II

 Course: DBMS

 Course Code: DBMS-2-01T

 ADDRESS: C/28, THE LOWER MALL, PATIALA-147001

 WEBSITE: www.psou.ac.in

S
E

L
F

-I
N

S
T

R
U

C
T

IO
N

A
L

 S
T

U
D

Y
 M

A
T

E
R

IA
L

 F
O

R
 J

G
N

D
 P

S
O

U
,
A

L
L

 C
O

P
Y

R
IG

H
T

S
 W

IT
H

 J
G

N
D

 P
S

O
U

,
P

A
T

IA
L

A

JAGAT GURU NANAK DEV

PUNJAB STATE OPEN UNIVERSITY, PATIALA
(Established by Act No. 19 of 2019 of the Legislature of State of Punjab)

http://www.psou.ac.in/

DBMS-2-01T: Data Base Management System (DBMS)

 Total Marks: 100

 External Marks: 70

Internal Marks: 30

Credits: 6

Pass Percentage: 40%

Course: Data Base Management System (DBMS)

Course Code: DBMS-2-01T

Course Outcomes (COs)

After the completion of this course, the students will be able to:

CO1 Understand the fundamental elements of database management system.

CO2 Understands the three level architecture of DBMS and mapping between these levels.

CO3 Familiar with the hierarchical model, network model, entity relationship model and

relational model.

CO4 Acquire knowledge of normalization technique that reduces data redundancy and

eliminates undesirable characteristics like Insertion, Update and Deletion Anomalies.

CO5 Apply SQL to solve problems

Detailed Contents:

Module

No.

Module Name Module Contents

Module 1 Introduction of DBMS Database Approach, Characteristics of a Database

Approach, Database System Environment. Roles in

Database Environment: Database Administrators,

Database Designers, End Users, Application

Developers. Database Management Systems:

Definition, Characteristics, Advantages of Using

DBMS Approach, Classification of DBMSs. Three

Level Architecture of DBMS: Database Schema and

Database Instance, Mapping Between Different

Views, Data Independence–Physical and Logical

Data Independence, Difference between logical data

independence and physical data independence,

Components of a DBMS, Data Dictionary, DBMS

Languages.

Module II Data Models Classification of Data Model, Hierarchical Model,

Network Model, Entity Relationship Model,

Database Conceptual Modeling by E-R model:

Concepts, Entities and Entity Sets, Attributes,

Mapping Constraints, E-R Diagram, Weak Entity

Sets, Strong Entity Sets, Comparison between Data

Models. Relational Data Model: Concepts and

Terminology. Constraints: Integrity Constraints,

Entity and Referential Integrity constraints, Keys,

Module III Relational Algebra &

Relational Calculus

Relational Algebra: Basic Operators, Additional

Operators.

Relational Calculus: Tuple Relational Calculus

and Domain Relational Calculus, Difference

between relational algebra and relational calculus.

Module IV Normalization Functional Dependency, Full Functional

Dependency, Partial Dependency, Transitive

Dependency, Normal Forms– 1NF, 2NF, 3NF,

BCNF, Multi-valued Dependency, Join Dependency

and Higher Normal Forms-4NF, 5NF.

Module V Transaction

Management &

Concurrency Control

Transaction Management and Concurrency Control:

ACID Properties. Database Protection: Security

Issues, Discretionary Access Control-Granting and

Revoking Privileges. Database Concurrency:

Problems of Concurrent Databases, Serializability

and Recoverability, Concurrency Control Methods-

Two Phase Locking, Time Stamping. Deadlock,

Database security and integrity, Different Methods

of Database Security, Database Recovery: Recovery

Concepts, Recovery Techniques-Deferred Update,

Immediate Update, Shadow Paging.

Module VI SQL Introduction to SQL*PLUS, Data types, Parts of

SQL: Data Definition Language, Data Manipulation

Language, Data Control Language, and Transaction

Control Language. SQL Operators, SQL Functions,

Joins, Roll up operation, Cube operation, Nested

query, Subquery, View, Disadvantages of SQL.

Books

1. Elmasry Navathe, “Fundamentals of Database System”, Pearson Education.

2. James Groff, Paul Weinberg, Andy Oppel, “Oracle SQL Complete Reference”, Tata

McGraw-Hill.

3. T.Connolly, C Begg,“Database Systems”, Pearson Education.

4. Jeffrey D. Ullman, “Principles of Database Systems”, Galgotia Publications.

5. Henry F. Korth, A. Silberschhatz, “Database Concepts”, Tata McGraw Hill.

6. C. J. Date, "An Introduction to Database Systems”, Pearson Education

https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=James+Groff&search-alias=stripbooks
https://www.amazon.in/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Paul+Weinberg&search-alias=stripbooks
https://www.amazon.in/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=Andy+Oppel&search-alias=stripbooks

COURSE: DBMS

UNIT 1: INTRODUCTION OF DATABASE MANAGEMENT SYSTEM

1. INTRODUCTION

1.1 DATABASE CONCEPTS

1.2 TRADITIONAL FILE MANAGEMENT SYSTEM

1.3 DATABASE

1.4 DATABASE MANAGEMENT SYSTEM (DBMS)

1.4.1 CHARACTERISTICS OF DATABASE MANAGEMENT SYSTEM

1.4.2 OPERATIONS/FUNCTIONS OF DATABASE MANAGEMENT SYSTEM

1.4.3 ADVANTAGES OF DATABASE MANAGEMENT SYSTEM

1.4.4 DISADVANTAGES OF DATABASE MANAGEMENT SYSTEM

1.5 COMPONENTS OF DATABASE SYSTEM

1.6 DBA (DATABASE ADMINISTRATOR)

1.7 COMPARISON OF FILE MANAGEMENT SYSTEM WITH DATABASE

MANAGEMENT SYSTEM

1.8 CATEGORIES OF DBMS

1.8.1 CENTRALIZED DBMS

1.8.2 PARALLEL DBMS

1.8.3 DISTRIBUTED DBMS

1.8.4 CLIENT/SERVER DATABASE SYSTEM

1. INTRODUCTION

The exponential growth of information technology and its dependency in different

sectors of society results in collection of hugs data. The large data collection has to be

stored in such a way that is should be retrieved and processed as per the requirement of

the user. Traditionally, data was manually maintained, stored in fields, updated and

retried manually. The system was worked with very small amount of data which was

isolate handled by single user. With the increase in size of data and access of multiple

users for single source of data, manually management of such data was nearly impossible

in such a scenario, the concept of database management system was originated. The goal

of the database management system is to store information in such a way so that it can be

access with ease. The database management system is aimed to perform basic operation

like: storing, retrieval, sorting, searching, and deletion of records in database. It plays a

critical role in almost all area where computer systems are used for information

processing like business, engineering, medical, defence, education, library etc. The

database sheared among different users. Sometime, it is called mediator between user and

data as it communicate between user and data. It responses to the user with results after

processing query raised by the user. Before going into more technical detail of DBMS, let

us ho through the basic concepts:

1.1 DATABASE CONCEPTS

The conceptual understating of database is required to go through two elementary

database concepts: Data and Information

I. Data: It is defined as representation of facts, concepts, and instruction in a from

which is suitable for communication, interpretation by human or computer.

• Data can be recorded and have meaning.

• Examples of data are: height, weights, prices, costs, names of things, marks,

image, and sound.

• In a formal manner, data is suitable for understanding and processing's.

Data can be represented with different character set and format which are

stipulated in table given below:

Representation of Data

Sr. No. Format Character set

1 Alphabet (A-Z a-z)

2 Digits (0-9)

3 Special characters (+,-,*,/,@,#)

Data (Raw)

4 picture Picture in jpeg, Gif, Tiff, etc

format

5 Sound Sound in mp3, mp4 format

Table 1.1 Representations of Data (Format Character Set)

In a any information processing system like database management system, data us

considered as raw material or figure as it itself is not significant. It requires to be

processed to come up with suitable fact and figure which is called as information.

II. Information: It is defined as processed from of data which has significance in

decision making or performing some action. In another words, information is

data that has been converted into some useful form.

The information is a result of processing of data according to specific requirement.

In hugs data collection user is asked to make query to fetch required information. The

following logical diagram demonstrated the same concept:

Fig. 1.1: Data Processing for Information

It is very important to throw light on the basic difference between these two

elements: Data and information, as these terms are quite miss used among beginners.

They sometime us information on the place of data but both information and data are

different from each other. The tabular representations of fact as shown below very well

explained the differences.

Sr.

No

Data Information

1 Data is raw facts and unorganized

figure that need to be processed.

Information is processed from of data

which may be further processed to

gain knowledge.

2 Data is useless until it is organized

and does not convey any message.

Information is useful and conveys

meaningful message.

3 Data is used as input for any data

processing application.

Information is the result of any data

processing application.

4 Decision making is not

recommended on data as data may

or may not be meaningful .That is

why: data not help in decision

making.

Information is always meaningful and

plays vital role in any decision

making process.

5 Data is available in unorganised and

un specific format.

Information is always required in

organised and in specific format.

6 Data is a collection of atomic levels

of pieces. It collectively represents

different fact and figure.

Information is organized collection of

data and is always represent about

specific entity.

7 Data itself has no significance in

business as data is not in the form

that can be interrelated.

Information is interrelated to data and

has strong significance in business.

8 Data representation order is not

significant as it may be in any order.

It has no effect of meaning

Information must be in specific order

otherwise

It may have different meaning.

9 The data cannot be interpreted as it

is very difficult to understand. It

may have different meaning for

different person in different

situation.

Information is concrete in nature and

easy to Understand. It has same

meaning for everyone in any

situation.

10 Example: Data may have figure like

20, 30, 50, 70 that it is a raw figure

which has no significance.

Example: Data is proceed and

associate with some meaningful facts

like 20 year old,30 kg weight,50 gm

Gold, 70 km/hr, etc

May be processed from of data. Now

 these figures have some meaning.

Table 1.2: Different between Data and Information

Importance of information in organization: the organisation has maintained data

of activities conducted during the session which include sale purchase data, human

resource data, store data, etc as shown below in logical diagram.

Fig. 1.2: Organisational Data Processing Conceptual Model

Every organisation has data processing systems that applied on different data to

fetch information for smooth working of their organization. The information may be

significant to the organisation for many purpose some of these are listed below which

emphasis that information is very important for smooth working of any organisation.

Based on the above points, we conclude that the information help in planning, the

action in the process of running and protecting the system.

• To gain information about the organisational sale and purchase.

• To access information of employee in the organisation.

• To know about the future predictions of the organisation.

• To know about the surroundings and whatever is happening in the society

and universe.

• To keep the system up to data.

1.2 TRADITIONAL FILE MANAGEMENT SYSTEM

The file management system is a traditional approach to store and mange data in

files. it is early day approach when records are stored in different files with different

format. Each department in organisation have own file storage system where specific

application are designed to process these applications. The department have their own set

rule to store and retrieve data from file system. The system to handle these file was called

file management system. Such system are file department and incompatible to other file

system. It means file system of one department may not work for file processing of

another department. But such system is preferably good as compare to manual file

management.

Key points:

• File processing system is a simple computer file system.

• It is a group of files storing data of an organization.

• File are in the form of text. Even records are also in text form.

• Each file is independent from one another.

• Each file is called a falt file.

• It uses hard disk or CD to store the data.

• File are designed by using programs written in programs written in programming

languages such as C, C++.

• Searching is very difficult. Searching will start and continue till find the result.

• If data is very large then searching will take long time.

ID Name

1 Akhil

2 Monika

3 Aastha

4 Ankush

5 Radhika

Formula for searching = n+1/2

• File are suitable when number of store items is small.

• It is not suitable when we have to perform data processing.

• As a system became more complex, file processing system presented many

limitations and were difficult to maintain.

Example : To understand file management system in details we are taking

practical example. Let us consider a business organisation where different department are

organised and performed different tasks. Suppose department are Sale and Purchase

Department, Inventory, Control Department, HR Department and Production unit. Every

department have own system to store information in files. The following diagram shows

how file management system works and manages data is different files.

Fig. 1.3: File Management system in a business Organisation

It is very much clear form the above diagram that in file management system

every department has separate storage of data and specific application for processing. In

such as system inter-departmental access is not possible and there is duplication of

organisational data. So the file management system has many limitations which are

addressed in new concept, called, database management system.

Limitation/ Disadvantages of file Management System:

1. Duplication of Data (Data Redundancy): The file are created according

to the application and every department in organistion have separate file system. So in

that case the repetition of information about an entity cannot be avoided. For instance in

Bank, the files are maintained about the customer. The personal information like

addresses of customer holdings savings account and also the address od the customers

will be present in file maintaining the current account. Even in case if same customers

have a saving account and current account his address will be present at two places.

There is duplication of data as files are not shear able among different applications.

2. Data Inconsistency and Inflexibility: Data isolation limited the flexibility

of file processing system in providing users with ad-hoc information requests. Data

inconsistency means data about same entity stored in different files are not up-to-date and

is not identical at same time. It is due to duplication of data which leads to greater

problem than just wasting the storage. Same data which has been repeated at several

places may not match after it has been updated at some places. For example: Suppose the

customer requests to change the address for his account in the Bank and the Program is

executed to update the saving bank account file only but his current bank account file is

not updated. Now the addresses of the same customer have two addresses stored in two

different locations that are called data inconsistency.

3. Difficulty in Accessing Data: In file management system, the program is

designed for generating ad hoc reports. It means that program is for not general purpose

and is data dependent. For example: Suppose administrator want to see list of all the

customers holding the saving banks account who lives in particular city. Administrator

will not have any program already written to generate that list but say he has a program

which can generate a list of all the customers holding the savings account. Then he can

either provide the information by going thru the list manually to select the customers

living in the particular locality or he can write a new program to generate the new list.

Both of these ways will take large time which would generally be impractical.

4. Data Isolation: The data files are created at different times and may be by

different users. The structures of different files are different and are located at different

locations. The data will be scattered in different files for a particular entity. So it will be

difficult to obtain appropriate data. For example: Suppose the address of an employee

may be stored in different location under different fields. For instance to store house

number and street number of employee, one user may store information under (HNo,

Street No.) and other one may use different name like (House Number and Street). This

way information is stored in different location of similar kind is hard to fetch as data is

isolated.

5. Poor data security: Data is stored in different files causing the security

problem. The data should be protected from unauthorized users. Every user should not be

allowed to access every data.

6. Difficult to Show Data According to User: In file processing system, it

was difficult to determine relationships between isolated data in order to meet user

requirements.

7. Concurrency Problems: When more than one user are allowed to process

the database. If in that environment two or more users try to update a shared data element

at about the same time then it may result into inconsistent data. In case of file

management system such concurrent access to data is hard to implement.

8. Data in separated files: Data is in more than one file and it is difficult to

take data from more than one files.

9. Data Dependence: Data dependence means it is impossible to change

storage structure without affecting the application program. If the format of a certain

record was changes, the code in each file containing that format must be updated.

10. Incompatible File Formats: Each programmer stores the data in the file in

the format as per the choice as there is no standard file format for storing the file. It

becomes very difficult to handle the different files in different format.

The database management systems are designed to overcome above listed

problems along with other advanced database concepts. The following section is designed

to address issues like Database, DBMS, Difference between Database and DBMS,

Characteristics of DBMS, Functions of DBMS, Advantages and Disadvantages of

DBMS.

1.3 DATABASE

Database: It is a computer based record keeping system whose over all purpose

is to record and maintains data. It is designed to hold bundle of organizational data. It

holds the records, fields, and cells of data.

The database stores the known facts that can be recorded and that have implicit

meaning. Data is represented in database in different levels of abstraction in its

architecture.

Typically, there are three levels: External, Conceptual, and internal. The following

diagram show how data is represented in different levels:

• External Level: It defines how user views data. Single user may have multiple

views.

• Conceptual Level: It is a communication medium between external and internal

level. Its representation is unique regardless of external level and internal level.

• Internal Level: It defines how data is physically stored.

Fig. 1.4: Database Abstraction Levels

Key Points:

• The database is a shared collection of logically related data, designed to meet the

information needs of an organization.

• It is a computer based record keeping system. Its overall purpose is to record and

maintain the information.

• The database is a single large repository of data which can be used simultaneously

by many departments and users.

• It holds not only the organisation's operational data but also a description of the

data. It is also defined as a self-describing collection of integrated records.

• The description of the data is known as the Data Dictionary or Meta Data (the

'data about data").

• We can perform many operations on database such as:

a) To add new operation.

b) To modify/ edit the existing information.

c) To remove/delete the unwanted information.

d) To retrieve/ view the stored information.

e) Arrange the information in a desired manner.

• Database is manages by an individual or group called Database Administrator

(DBA), Who is responsible for designing, creating and maintaining the database to

satisfy the needs of the users.

• All access to database is automated by special software called Database

Management system (DBMS).

• The tern database is generally confused with DBMS. The database is a concept to

representation data whereas DBMS an application program to provide access on

database Both together represent Database System.

Characteristics of Database:

Database has some Characteristics in order to meet the standards which are as

follows:

1. Data sharing: Database should ne capable to be shared among different users and

applications.

2. Persistence: Persistence of data means data in a database exist permanently and

available in time whenever it is required. It should live beyond the scope of the

process that created it.

3. Integrity/Correctness: Data integrity refers to the property of data which enforce

constrains to safe format of data. It ensures data should in a uniform format and

implemented with integrity rules. It ensures data should be correct with respect to

the real world entity that they represent.

4. Security: The security of data in database is in the top of priority. It should be

protected from unauthorized access as multiple users are sharing database.

Database should have their own mechanism for implementing security.

5. Consistency: The consistence of data is must whenever more than one data

element in a database represents related real world values. The values should be

consistent with respect to the relationship.

6. Non-Redundancy: The data in database should not be duplicated as no two data

items in a database should represent the same real world entity. The non-

redundancy helps to reduce size of the database and avoid inconsistency of data.

7. Independence: The database has three different levels (External, Conceptual,

Internal) to represent data. These levels should be independent of each other so

that the changes in one level should not affect the other levels.

1.1 DATABASE MANAGEMENT SYSTEM (DBMS)

DBMS: A database management system is a collection of interrelated data and a

set of programs to access those data. The interrelated data is called database which is a

shared collection of logically related data, designed to meet the information needs of an

Organisation.

The primary goal of a DBMS is to provide methods to store and retrieve database

information that is both convenient and efficient. Database sustems are designed to

manage large bodies of information. In addition, the database system must ensure the

safety of the information stored. Despite system crashes or attempts at unauthorized

access. If data is to be shared among several users, the system must avoid possible

anomalous results.

Key Points:

• DBMS is a software system that allows user to create , maintain and delete a

database. It provides controlled access to the data.

• It centralzed the database.

• It is a computerized system which maintains the data.

• DBMS is an intermediate between programs and data. It is used to make

information from data.

• DBMS is a collection of programs which are required to perform different task on

database. It perform various operation on data like defining structure of data,

accepting data, format data as per user requirement, hide data, allow concurrent

access, backup and provide security to data.

• DBMS ensures the privacy of data. It prevent data from unauthorized users.

• Commercially available database management systems in the market are dbase,

Foxpro, Oracle etc.

• In DBMS, data can be represented in the dorm of tables.

Employee

Ename Empno Job Sal Deptno

Nidhi 6258 Clerk 900 20

Aastha 6388 Manager 1500 30

Manmeet 6765 Clerk 1050 10

Navreet 6800 Analyst 1100 30

Entity : Employee

Attributes : Ename, Empno, Job, Sal, Deptno

Record : collection of related data i.e. Ename, Empno, Job, Sal, deptno

• In DBMS, each user can view data according to his/ her choice. Two users can use

the same portion of data at the same time different forms.

• DBMS is used to create the reports and matahematical functions for the users.

1.1.1 Characteristics of Database Management system

A database management system is designed to define, manipulate, retrieve and

manage data in a database. It generally manipulates the data itself, the data format, filed

names, record structure and file structure. It also defines rules to validate and manipulate

this data. The modern DBMS has the following characteristics:

1. Real world entity: The DBMS is designed to represent real world entities

consist of feature and behaviour of real world object. The DBMS have constructs that can

easily define real world entity.

2. Relational tables: The database contains tables which are mapped with

entities. These entity tables are related with other tables to define relational. This eases

the concept of data saving. A user can understand the architecture of database just by

looking at table names.

3. Isolation and data application: The DBMS is designed to isolate data

form other complication working of the system as data in preserve into database. The

application programs are written to access data

4. Less redundancy : DBMS Follows rules of normalization, which splits a

relation when any of its attributes is having redundancy in values. Following

normalization, which itself is a mathematically rich and scientific process, make the

entire database to contain as less redundancy as possible.

5. Consistency: DBMS always enjoy the state of consistency where the

previous from of data storing application like file processing does not guarantee this.

Consistency is a state where every relation database remains consistent. There exist

methods and techniques, which can detect attempt of leaving database in inconsistent

state.

6. Query language: DBMS is equipped with query language, which makes it

more efficient to retrieve and manipulate data. A user can apply as many any different

filtering options, as her on she wants. Traditionally it was not possible where file-

processing system was used.

7. Multiuser and concurrent access: DBMS support multi-user environment

and allows them to access and manipulate data in parallel. Though there are restriction on

transactions when they attempt to handle same data item, but users are always unaware of

them.

8. Multiple views: DBMS offers multiples view for different users. A user

who is in sales department will have a different view of database than a person working

in production department. The enables user to have a concentrate view of database

according to their requirements.

9. Security: Features like multiple views offers security at some extent where

users are unable to access data of other user and department. DBMS offers methods to

impose constraints while entering data into database and retrieving data at later stage.

DBMS offers many different levels of security features, which enables multiple users to

have different view with different features, for example, a user in sales department cannot

see data of purchase department is one thing, additionally how much data of sales

department he can see, can also be managed. Because DBMS offer many different

features, for examples, a user in sales department cannot see data of purchase department

is one thing, additionally how much data of sales department he can see, can also be

managed. Because DBMS is not saved on disk as traditional file system it is very hard for

a theif to break the code.

1.1.2 Operations/Functions of Database Management System

A DBMS is an intermediate between user and database. The DBMS provides

multiple useful interface to interact with database. There are several function that a

DBMS performs to ensure data integrity and consistency of data in the database. The

following are some important function of data management system.

1. Data Dictionary Management : Data Dictionary is where the DBMS

stores definitions of the data elements and their relationships i.e. metadata. It is often

hidden from the user and is used by Database Administrators and Programmers. It also

shows which program use which piece of database and record.

The DBMS uses different function to look up the required data along with

relationships into data Dictionary. Whenever a request is made for a particular data in

database then DBMS programs access data dictionary. The function removes structural

and data dependency and provides the user with data abstraction.

2. Data Storage Management : The data storage management is one of core

function of DBMS which is used for the storage of data and any related data entry forms,

report definitions, data validation rules, procedural code, screen definition and structures.

The DBMS manage data in such a way that users do not need to know how data is stored

or manipulated.

3. Data Transformation and Presentation : The data transformation and

presentation is one of integrated function of DBMS as it is helpful to store data in simple

format and display information in uniform format. The function exits to transform any

data entered into required data structures. By using the data transformation and

presentation function, the DBMS can determine the difference between logical and

physical data formats.

4. Security Management: The security management is implemented in

DBMS at different levels. Security management sets rules that determine specific user

that are allowed to access the database. Users are given a username and password or

sometimes through biometric authentication. DBMS must monitor user request. It can

reject the request which break the security rules.

5. Data Definition: DBMS must be able to accept data definition commands.

These commands are: create Alter and Drop.

6. Data Manipulation: DBMS must be able to handle the request from user

to retrieve update and delete data. These commands are: Select, insert, Update and

Delete.

Fig. 1.6: Operations/Function of Database Management System

7. Data Integrity Management: Data integrity and data consistency are the

core function of DBMS to provide security to data. The DBMS enforces these

simultaneously without affecting the integrity of the database. The DBMS enforces these

rules to reduce things such as data redundancy, which is when data is stored in more than

one place unnecessarily, and maximizing data consistency, making sure database is

returning correct/same answer each time for same question asked.

8. Backup and Recovery Management: Backup and recovery is done by

DBMS to safeguard the old data so that unwanted damage to data can be recovered.

Backup management refers to the data safety and integrity; for example backing up

document files. Similarly recovery of data can be implemented to go back to check the

previous status of the data. DBMS software component ― transaction manager‖ is used to

recover the data which was lost due to some misshapen.

9. Database Access Languages and User Interfaces : The DBMS provides

multiple user interfaces to meet different requirements of the end user in different

network environments DBMS may provides different terminals, web interfaces, etc.

DBMS also provides user interface to interact with database. It is not feasible to provide

everything in the form of drop down menu so DBMS supports a SQL (structured query

language) language which is a non procedural language. The use of SQL language makes

it easy for user to seek information according to the requirement. User can seek

information by providing command to DBMS query processor which arranges data to the

user.

10. Concurrency control : since DBMS support sharing of data among

multiple users they must provide a mechanism for managing concurrent access to the

database. DBMS ensure that the database kept in accurate state.

1.1.3 Advantages of Database Management System

1. Minimal Redundancy/Eliminate Duplication: In non-database system

each application program has its own private files. In this case, the duplicated copies of

the same data are created in many places. In DBMS, all data of an organization is

integrated into a single database file. The data is recorded in only one place in the

database and it is not duplicated. Centralized control of unnecessary duplication of data.

It also reduce the total amount of data storage. It also eliminates the extra processing

required to trace the results.

2. Data Integrity: In database management system, data in database is stored

in tables. A single database contains multiple tables and relationships can be created

between tables (or associated data entities). This makes easy to retrieve and update data.

Data store in database is accurate and consistent. Integrity of data means that data in

database is always accurate, such that incorrect information cannot be stored in database.

If the system "crashes", we can retrieve the data easily

3. Improved Data Consistency: By controlling the data redundancy, the data

consistency is obtained. If a data item appears only once, any update to its value has to be

performed only once and the updated value is immediately available to all users. If the

DBMS has controlled redundancy, the database system enforces consistency.

4. Data in Shared Form: In DBMS, data can be shared by authorized users

of the organization. The database administrator manages the data and gives rights to users

to access the data. Many users can be authorized to access the same piece of information

simultaneously. The remote users can also share same data. Similarly, the data of same

database can be shared between different application programs. The DBMS allows the

sharing of data under its control by any number of application, programs or users. There

is no need to insert the data separately by each department or user. Data enter by one user

can be share by all the users.

5. Enforcement of Standards: DBMS is enforced laws and policies in the

form of standards which helps in maintaining database. Data is stored according to the

standards and in uniform pattern The common standards can be implemented to all

databases.

6. Data Security: Data must not be accessed by unauthorized persons with

the help of DBMS we can ensure that proper access procedures can be implemented.

Different level of security could be implemented for various types of data and operations.

7. Solving Enterprise Requirement than Individual Requirement: The

DBMS is designed for general purpose and it is developed that person with different

technical skills can use it as per the requirements. Since many types of users with varying

level of technical knowledge use a database, a DBMS should provide a variety of user

interface. The overall requirements of the enterprise are more important than the

individual user requirements. So the DBA (Database Administrator) O can structure the

database system to provide an overall service,

8. Providing Backup and Recovery: The DBMS provide the backup and

recovery system so that data can be stored for future. It is also stored to manage the

unwanted lose Similarly recovery policies are used which is automatically create the

backup of data and restore data if required A DBMS must provide facilities for

recovering from hardware or software failures.

9. Cost of Developing and Maintaining System is Lower: The cost of using

DBMS is low as it requires basic resources which are generally available in the

organisation. The cost involved in developing and maintaining the whole system is low

whoever shitting manual data to electronic data may include labour cost which is addition

to system cost.

10. Concurrency Control: The DBMS have control over the concurrent

access to database It provides a common interface to perform access to database. The

concurrent users may access data at same time being sharing by the DBMS. The DBMS

designed polices such that one user access data other cannot perform updated task. At a

time only one user is allowed to perform update operation other user need to wait for

update the common data.

11. Flexible System: DBMS is a flexible system as it is designed for general

purpose. The DBMS can handle small to large database and it can be redesigned to meet

the requirements of the users. Moreover Database used by one system can be transformed

into another system.

12. Better Services to the User: Because data are integrated into a single

database, complex requests can be handled much more rapidly, then if the data were

located in separate, non-integrated files. In many businesses, faster response means better

customer service.

13. Tools for Report Writing: Most of the DBMS provide the report writer

tools used to create reports. The users can create very easily and quickly. Once a report is

created, it can be used may times and it can be modified very easily. The created reports

are also saved along with database and behave like a software component.

14. Controlled Concurrency: In a computer file-based system, if two users

are allowed to access data simultaneously, it is possible that they will interfere with each

other. For example, if both users attempt to perform update operation on the same record,

then one may overwrite the values recorded by the other. Most database management

systems have sub-systems to control the concurrency so that transactions are always

recorded with accuracy.

15. Application Program/Data Independence: The separation of data

structure of database from the application program that uses the data is called data

independence. In DBMS, we can easily change the structure of database without

modifying the application program. Data is independent from one level to another level.

16. Improved Decision Making Process: Better-managed data and improved

data access make it possible to generate better-quality information, on which better

decisions are based. The quality of the information generated depends on the quality of

the underlying data. Data quality is a comprehensive approach to promoting the accuracy,

validity, and timeliness of the data. While the DBMS does not guarantee data quality, it

provides a framework to facilitate data quality initiatives.

17. Improvement in End-User Productivity: The availability of data,

combined with the tools that transform data into usable information, empowers end users

to make quick, informed decisions that can make the difference between success and

failure in the global economy.

18. Application Development Ease: The application programmer need not

build the functions for handling issues like concurrent access, security, data integrity, etc.

The programmer only needs to implement the application business rules. This brings in

application development ease. Adding additional functional modules is also easier than in

file-based systems.

19. Data Atomicity: A transaction in commercial databases is referred to as

atomic unit of work. For example, when you purchase something from a point of sale

(POS) terminal, a number of tasks are performed such as;

• Company stock is updated.

• Amount is added in company's account.

• Sales person's commission increases etc.

All these tasks collectively are called an atomic unit of work or transaction. These

tasks must be completed in all, otherwise partially completed tasks are rolled back. Thus

through DBMS, it is ensured that only consistent data exists within the database.

20. No Data Isolation: Data is stored in uniform format so there is no need to

make different programs for each data.

21. Advanced Capabilities: DBMS also provides advance capabilities for

online access and reporting of data through Internet. Today, most of the database systems

are online. The database technology is used in conjunction with Internet technology to

access data on the web servers

1.1.4 Disadvantages of Database Management System

In contrast to the lots of advantages, there are few disadvantages as well which are

discussed below:

1. Complexity: The database designed is no of the major challenging task in

DBMS as it is complex, difficult, and time-consuming. DBMS is an extremely complex

piece of software database designer's developers DBA and end users must understand this

functionality to take full advantage of it. Failure to understand the system can lead to bad

design decisions.

2. Large Size: The complexity and breadth of functionality makes the DBMS

an extremely large piece of software, occupying many megabytes of space and requiring

huge amounts of memory to sun efficiently

3. Performance: File Based system is written for a specific application a

result performance is generally very good. However, the DBMS is written to be more

general to cater for many applications rather than just one. So performance is very poor.

4. Higher Impact of Failure: In most of the organizations, all data is

integrated into a single database. If database is corrupted due to power failure or it is

corrupted on the storage media, then our valuable data may be lost or whole system stops.

All users and applications rely on the availability of the DBMS the failure of any

component can bring operations to a hall.

Fig. 1.7: Disadvantages of Database Management System

5. Cost of using DBMS

(a) Hardware Cost: If we want to implement DBMS then we need DBMS

software which is very expensive. We need to upgrade the hardware the

processing overheads to implement the security, integrity and sharing of

data make the additional cost.

(b) Cost of Conversion and Installation: DBMS vendors frequently upgrade

their products by adding new functionality. Such new features often come

bundled in new upgrade versions of the software. Some of these versions

require hardware upgrades. Not only do the upgrades themselves cost

money, but it also costs money to train database users and administrators to

properly use and manage the new features. Cost of DBMS and extra

hardware may be insignificant compared with the cost of converting

existing applications to run on the new DBMS and hardware. This cost

includes cost of training staff to use these new systems and employment of

specialist staff for help. That is way some organisations feel tied to their

current systems and cannot switch to modern database technology.

(c) Cost of Staff Training: DBMS is a complex system which demands

specialized users. The user need to get training which ultimately added to

the total coast.

(d) Extra Cost of Specialized Manpower: The DBMS is managed by skilled

people includes DBA, Programmer, and data entry staff.

6. Threat to Data Integrity: Database is shared among different users and

concurrent access is permitted in DBMS. So there is always a threat to data integrity,

especially when there is transition failure.

7. Difficulty in Maintaining Security: Data is reserved in common place and

different users are accessing data with different security levels. The user management and

security access is a challenging task which requires attention. Access policy design for

secure access is difficult to maintain.

8. Required Backup and Recovery Procedures: The database need to be

backed up in time so that unwanted risk of data lose can be managed. DBMS requires

special extra hard disk space and special place to put backup of old data.

9. Data Quality: Since the database is accessible to users remotely, adequate

controls are needed to control users updating data and to control data quality. With

increased number of users accessing data directly, there are enormous opportunities for

users to damage the data. Unless there are suitable controls, the data quality may be

compromised.

10. Enterprise Vulnerability: When DBMS is used in an enterprise level then

centralizing all data of an enterprise in one database becomes an indispensable resource.

The survival of the enterprise depends on reliable information at that time. The enterprise

therefore becomes vulnerable to the destruction of the database.

1.2 COMPONENTS OF DATABASE SYSTEM

The database system is an environment which incorporates all the components

required to execute database operations. It includes software and hardware used in

functioning of database.

The database system is designed to provide an environment that is both convenient

and efficient to perform different task on data. There are five major components in the

database system environment which are as follows:

1. Data (Data, Metadata)

2. Software (DBMS and Application Programs)

3. Hardware

4. Users

5. Procedure

Fig. 1.8: Components of Database System

The following diagram shows these components and interaction with each other.

Fig. 1.9: Database System Environments

1. Data (Data, Meta data): The data is a fact and figure which is impotent to

be stored in database. A database represents data and method used to preserve data in

database. It designed to store data in such as way so that it can easily sharable and is

being integrated. It also contains meta-data which is an information stored in catalo about

the data. It is also called data about data or data dictionary which means it has

information about data which stored in database. It defines the definition and

representation information of data.

2. Software (DBMS and Application Programs): The software is actual

DBMS. All requests from users for access to the database are handled by the DBMS.

DBMS allows the users to communicate with the database. The application programs

which are designed to handle database is called DBMS, Database management system.

DBMS is responsible for smooth work with database and acts as interface. DBMS

interface shields complex detail of data like physical storage structure and inter

dependency of data. It provides method to handle data like insertion data, retrieving data,

deleting, updating, changing structure of data, etc. It is also categorized into two

components: Software to process Queries and Software to access stored data. The

Software to process Queries deals with user interface and interaction to sort the query

raised by the user whereas software to access data acts as an interface with physical

database.

3. Hardware: The hardware component includes actual computer hardware

used for keeping and accessing the database. To store data, the secondary storage devices

are used such as Magnetic Disk, CD/DVD. Input and output devices like keyboard,

mouse, scanner reader, monitors are used. Data processing hardware includes computer

processor which plays significant role to support a database system.

4. Users: The users are person who is using the system as per their role or

requirement. In typical database system, we categorized user on basis of their role. We

have four types of users which are discussed below:

• Database Designers: Database designers are people who identify data to be stored

in the database and choosing appropriate structures to represent and store the data

Most of these functions are done before the database is implemented and

populated with the data. It is the responsibility of the database designers to

communicate with all prospective users to understand their requirements and come

up with a design that meets these requirements.

• Database Administrator (DBA): DBA is responsible for authorizing access to

the database, for coordinating and monitoring its use, and acquiring software and

hardware resources as needed.

• Application Programmers: They are responsible for developing application

program for end users. The job of application programmers is to determine the end

use requirements and develop specifications for applications that meet the

requirements. They implement the specifications as programs, then test and debug

the programs.

• End Users: End users are those people to whom the system is designed. These use

are actually accessing the database from their terminals. The end users are

classified on the basis of knowledge of database and extent of use.

Table 1.3: Different End Users and their Rolls

The database system have different users as listed above, but role of DBA is

significant in many aspects. We discuss the role of DBA in 1.6 in detail.

5. Procedures: Procedures refer to the instructions (rules) that govern the

design and use of the database. The users of the system and the staff that manage the

database require documented procedures to use or run the system. The followings are

some instructions so that we can follow procedure systematically:

(i) Log on to the DBMS

(ii) Start and stop the DBMS

(iii) Make backup copies of the database

(iv) Handle hardware or software failures.

(v) Change the structure of a table.

1.3 DBA (DATABASE ADMINISTRATOR)

• The DBA is a person or group of persons who control the right to access to the

data and over all maintain policies to ensure softy and smoothly working of the

system.

• DBA controls the design and use of database. DBA is responsible for

implementing the database system within an organization.

• DBA provides a necessary technical support for implementing policy for smooth

working of the database.

• DBA is responsible for evaluation, selection and implementation of DBMS

package.

• The DBA has to perform number of important task like authorizing access to

database, coordinating and monitoring different types of users, handling software

and hardware issues.

• Database Administrator's job requires a high degree of technical expertise.

• In practice, the DBA may consist of team of people rather than just one person.

Functions Responsibilities of Database Administrator (DBA)

The database administrator performs a critical role within an organization and has

to perform different functions and responsibilities Depending on the organization and the

department, the role DBA can either be highly specialized or incredibly diversified. The

functions of DBA are as follows:

1. Defining conceptual schema and database creation: The DBA is

responsible for designing conceptual schema of database. The DBA defined how data is

to be represented in the database and how tables are related to each other.

2. Storage structure and access method definition: The DBA is responsible

to define storage structure and provide access methods to database. The DBA defines

access policies to an individual or a group. The DBA also decide how the data is to be

represented in the database.

3. Defining integrity constraints: The DBA defines integrity rules to ensure

the accuracy of the data. The integrity rules are defined according to the nature and

requirement of the users. The DBA defines the checks and integrity policies so that users

can access data with freedom as checks and integrity constrains do not allow illegal

operations.

4. Ensuring availability of data: The DBA is ensured that whenever request

is made for data, data should be available. The availability of data around the clock is

possible with appropriate steps to take backup and switching load among different

systems. The DBA defines policies such that data must be available in time.

5. Deciding backup and recovery methods: The backup and recovery

methods are very crucial for the safety of the data as system accidental failure can happen

any time. The DBA decides which data is to be backed up and when. DBA defines policy

for backup so that data loss can be avoided.

6. Granting authorisation to the users: The DBA defines list of users with

access level so that data can be access by the authorised users only. The authorisation of

user is monitored and updated by DBA time to time as one user may changes his access

level.

Fig. 1.10: Responsibilities of DBA

7. Routine maintenance: The routine maintenance includes up gradation of

system, updating user profiles and other information regarding access policies. The

Database Administrator understands the following routine maintenance activities:

• When transaction rollbacks occur DBA decides what to do when a transaction

rollback. If such incidence occurs, then DBA checks the updating records and

decide about re-do or undo of the transaction.

• When the database is out of system disk space: The database is stored into

physical memory which in limited in size. When the data is about to reach

maximum limit in disk space then DBA decide whether to erase some unwanted

data or add new hard disk into system.

• When unique constraints have been violated: The access to data in database in

done through some unique constrains whenever such rule is violated then DBA

has to look into the matter The unique constraints policies are updated as their

reports of violation such that violations can be avoided in future.

• When not to shut down the database while the application is running

8. Installing and updating software and hardware: The DBA is the person who is

authorised to installed software into the database machine. The DBA decides the need of

updating the hardware

9. Permission to Access Data: DBA gives permission to user to use database. Only

authorised user can access data.

10. Data view: DBA can create different views of data that can be shown to different

users.

11. Monitoring the performance. DBA is responsible for overall performance of the

system. To improve the performance DBA regular monitor the system performance.

12. Makes Decisions: It is the DBA's job to decide exactly what information is to be

held in the database.

1.4 COMPARISON OF FILE MANAGEMENT SYSTEM WITH DATABASE

MANAGEMENT SYSTEM

Sr. No. Concepts File Management System Database

Management System

1. Redundancy Data redundancy

(duplication) is possible.

Data duplication is a

commonly visible in file

management system as

multiple files are stored at

different location.

Data redundancy

(duplication) is not

possible. In database

management system,

minimum redundancy

occurred as duplication

is avoidable.

2. Consistency Data is duplicated into

number of files and

consistency is a hard job in

file management system.

Consistency ensures that

data at different location

about single entity should be

Database management

system avoids

duplication as a result

consistency can be

avoided. Moreover data

 same with time.

3. Data Isolation
The data isolation is

preserve in the file

management system as data

is stored in different file

which are hardly associate

with each other.

The data is stored into

tables which are linked

with each other so the

isolation of data is not

available.

4.
Standards

enforcement

In an organization, every

department has their own

file system and format so

uniform format and

standards cannot be

implemented. Moreover

application programs are file

dependent so new standard

enforcement is hard to

implement.

DBMS is enforced

laws and policies in the

form of standards

which helps in

maintaining database.

Data is stored

according to the

standards and in

uniform pattern so any

programs are file

dependent so new

change in standard

policies do not affect

the working of the

database.

5.
Data security Data security is

implemented at file level,

whereas user level security

itself is not feasible.

Data security is

implemented at

different levels and

data security policies

are upgradable to meet

 the requirements.

6.
Application

dependency

The applications are

developed according to the

data file, it means we have

to make certain changes

whenever application

applied on different format

data file.

The application

programs in DBMS are

independent on

database. Data

independency is

enforced in the system

which helps the

programmer to write

general purpose

programs

7.
Multiple

Access

The multiple access to data

file is not permitted in file

management system.

In database

management system,

multiple access is

permitted.

8.
Concurrency

Problem

There is concurrency

problem in file management

system as multiple accesses

is not desirable.

DBMS is designed to

meet concurrent access

which means more than

one user can access

same data without any

problem.

9.
Technical

platform

In file management system,

every department developed

their own applications to

access data files. Generally

applications are developed

DBMS provides

integrated program kit

which is developed

using common

language. Examples of

DBMS are Oracle,

 in C, C++, COBOL etc. Sequel & Foxpro etc.

10.
Real world

modelling

Real world modelling is not

possible as files

management system stored

data in files. The real world

modelling requires object

based data representation

which is not possible in file

based system.

Real world modelling

is done through object

representation in

DBMS as data along

with other attributes

can be stored.

11.
No. of Files There are less number of

files as compared to DBMS

There are more number

of files.

12.
Cost It is cheaper as compared to

DBMS.

It is costly

13.
Structure It has simple structure It is complex structure.

14.
Flexibility It is less flexible as

compared to DBMS.

It is more flexible.

15.
Efficiency When the volume of data

increases, its efficiency

decreases

Volume of data not

affect its working

capability.

1.5 CATEGORIES OF DBMS

The classification of a database management system (DBMS) is greatly influenced

by the underlying computing system on which it runs, in particular of computer

architecture such as parallel, networked or distributed. However, the DBMS can be

classified according to the number of users, the database site locations and the", expected

type and extent of use.

1.5.1 Centralized DBMS

1. In centralized .database systems, the database system, application programs, and

user-interface all are executed on a single system and dummy terminals are

connected to it.

2. It is physically confined to a single location.

3. The processing power of single system is utilized and dummy terminals are used

only to display the information.

4. As the personal computers became faster, more powerful, and cheaper, the

database system started to exploit the available processing power of the system at

the user's side, which led to the development of client/server architecture,

5. In client/server architecture, the processing power of the computer system at the

user's end is utilized by processing the user-interface on that system.

6. The centralised database system .consists of a single processor together with its

associated data storage devices and other peripherals.

7. The system offers data processing capabilities to users who are located either at

the same site, or, through remote terminals, at geographically dispersed sites.-

8. The management of the system and its data are controlled centrally form any one

or central site.

The following diagram 2,6 show the centralized DBMS.

Fig. 2.6: Centralized DBMS

Advantage of a Centralized DBMS

1. Centralized control: The organization can exert centralized management

and control over the data by Database Administrator (DBA). The database

administrator is the focus of centralized control./

2. Shared data: A database allows the sharing of data under its control by

any number of application programs or users.

3. Reduction of redundancies: Centralized control of data by DBA avoids

unnecessary duplication of data and effectively reduces the total amount of

data storage required. It also eliminates the extra processing necessary to

trace the required data in a large mass of data.

4. Integrity: Centralized control can also ensure that adequate checks are

incorporated in the DBMS to provide data integrity. Data integrity means

that the data contained in the database is both accurate and consistent.

Therefore data values being entered for storage could be checked to ensure

that they fall within a specified range and in the correct format.

5. Security: Data is a vital importance to an organization and may be

confidential. Such confidential data must not be accessed by unauthorized

person.

6. Data Independence: Data independence allows dynamics changes and

growth potential.

7. Operations: Most of the functions such as update, backup, query, control

access and so on, are easier to accomplish in a centralised database system.

8. Size of the Database: The size of the database and the computer on which

it resides need not have any bearing on whether the database is centrally

located.

Disadvantage of a Centralized DBMS

1. Problems associated with centralization: Several problems are associated

with centralization like networking the excessive load on the system at the

central site would likely causes all accesses to be delayed etc.

2. Cost of software and migration: The cost of purchasing or developing the

software, the hardware has to be upgraded to allow for the extensive

programs and the work spaces required for their execution and storage. The

processing overhead is also added by implement security integrityof data

causes a degradation of the response and through put times. It is also added

the cost of migration from .a traditionally separate application environment

to an integrated one.

3. Complexity of backup and recovery: The centralization reduces

duplication, the lack of duplication required that the database be adequately

backed up so that in the case of failure the data can be recovered. Backup

and recovery operations are fairly complex in a DBMS environment.

4. Server Down: When the central site computer or database system goes

down, then every user is blocked from using the system until the system

comes back.

5. Communication costs: The communication costs from the terminals to the

central site can be expensive.

1.5.2 Parallel DBMS

1. Parallel database systems architecture consists of a multiple central processing

units (CPUs) and data storage disks in parallel.

2. They improve processing and input/output (I/O) speeds.

3. Parallel DBMS are used in the applications that have to. query extremely large

databases or that have to process an extremely large number of transactions per

second.

The following diagram 2.7 shows the parallel DBMS.

• Shared data storage disk

• Shared memory

• Hierarchical

• Independent resources

Advantages of-a Parallel DBMS.

1. Parallel database systems are very useful for the applications that have to

query extremely large databases.

2. In a parallel database system, the throughput and the response time are very

high. Throughtput is number of tasks completed in -given time duration.

Response time is amoung of time required by single task for completion.

Disadvantages of a Parallel DBMS

1. In a parallel DBMS, there is a .startup cost associated with initiating a single

process and the startup-time may overshadow the processing time, affecting

speedup adversely.

2. In parallel DBMS, the processes access the shared resources which slow down

the result.

1.5.3 Distributed DBMS

1. Distributed DBMS consist soft of a single logical database that is spilt into

number of fragments.

2. Distributed database systems are similar to client/server architecture in a

number of ways.

3. Both typically involve the use of multiple computer systems and enable

users to access data remote system.

4. Distribute database system broadens the extent to which data can be shared

well beyond that which can be achieved with the client/server system.

Following diagram 2.8 shows the distributed DBMS architecture.

Fig. 2.8: Distributed DBMS

Advantages

1. Efficiency and better Performance: Distributed database architecture

provides greater efficiency and better performance.

2. Response time: The response time and throughput is high as data is

available at different places.

3. Custom-built Machine: The server database machine can be custom-built

or tailored to the DBMS function and thus can provide better DBMS

performance.

4. Customized user interface: The client application-database might be a

personnel workstation tailored to the needs of the .end users and thus able

to provide better interfaces, high availability, faster responses and overall

improved ease of use to the user.

5. Shearing of Database: A single database on server can be shared across

several distinct client application systems.

6. Adding new location: It causes less impact on ongoing operations when

adding new locations. As data volumes and transaction rates increase, users

can grow the system incrementally.

7. Local autonomy: Distributed database system provides local autonomy.

Disadvantage of Distributed DBMS

The recovery from failure is more complex in distributed database systems than in

centralized systems.

1.5.4 Client/Server Database System

1. Client/server architecture of database system has two logical components namely

client, and server.

2. Clients are generally personal computers or workstations whereas server is large

workstations, mini range computer system or a mainframe computers system.

3. The server computer is called backend and the client's computer is called front-

end. These server and client computers are connected into a network.

4. The applications and tools of DBMS act as clients, making requests for its.

services.

5. DBMS software resides on the server.

6. The DBMS, in turn, processes these requests and returns the results to the client(|).

7. The client/server architecture is a part of the open systems architecture in which

all computing hardware, operating systems, network protocols and other software

are interconnected as a network and work in concert to achieve user goals.

8. It is well suited for online transaction processing and decision support

applications, which tend to generate a number of relatively short transactions and

require a high degree of concurrency.

Fig. 2.9: Client Server DBMS

As shown in Fig. 2.9, the client/server database architecture consists of three

components namely, client applications, a DBMS server and a communication network

interface. The client applications may be tools, user-written applications or vendor-

written applications. They issue SQL statements for data access. The DBMS server stores

the related software; processes the SQL statements and returns results. The

communication network interface enables client applications to connect to the server,

send SQL statements and receive results or error messages or error return codes after the

server has processed the SQL statements. In client/server database architecture, the

majority of the. DBMS services are performed on the server.

Advantages of Client/Server DBMS

1. Less expensive: Client-server system has less expensive platforms to

support^ applications that had previously, been running only on large and expensive mini

or mainframe computers.

2. Menu-drive interface: Clients offer icon-based menu-driven interface,

which is superior to the traditional command-line, dumb terminal interface typical of

mini and mainframe computer systems.

3. Flexible and productive environment: Client-server database system is

more flexible as compared to the centralised system. Client/server environment facilitates

in more productive work by the users and making better use of existing data.

4. Response time and throughput: The client server model is based on

request and reply model when a machine make request to the server then server

immediately reply so Response time and throughput is high.

5. Custom-built Servers: The database server machine can be custom-built

or tailored to the DBMS function-and thus can provide a better DBMS performance.

6. Custom build Client machine: The client application database might be a

personnel workstation, tailored to the needs of the end users and thus able to provide

better interfaces, high availability, faster responses and overall improved ease of use to

the user.

7. Powerful Single Server: A single database on server can be shared across

several distinct client application systems.

Disadvantages of Client/Server DBMS

1. High set cost: The setup cost is high which include labour or

programming, cost is high in client/server environments, particularly in initial phases.

2. Lack of management tools: There is a lack of management tools for

diagnosis, performance monitoring and tuning and security control, for the DBMS, client

and operating systems and networking environments.

Questions

1. What do you mean by data? How is it different from information, explain by

example?

2. What is database system? What are four components of database system?

3. What are advantages of database system?

4. What is DBMS? What are the advantages and disadvantages offered by such

system?

5. What are the main responsibilities of DBA? Explain.

6. What do you mean by file system? Explain it limitations.

7. Compare file management system with database management system.

COURSE: DBMS

UNIT 2: DBMS ARCHITECTURE

2. INTRODUCTION

2.1 THREE LEVEL ARCHITECTURE OF DBMS

2.1.1 OBJECTIVES OF ARCHITECTURE

2.1.2 EXTERNAL LEVEL/EXTERNAL VIEW

2.1.3 CONCEPTUAL LEVEL/COMMUNITY USER VIEW/LOGICAL LEVEL

2.1.4 INTERNAL LEVEL/STORAGE VIEW/PHYSICAL LEVEL

2.1.5 DATABASE SCHEMA AND DATABASE INSTANCE

2.1.6 MAPPING BETWEEN DIFFERENT VIEWS

2.2 EXAMPLE OF THREE LEVEL ARCHITECTURE

2.3 DATA INDEPENDENCE

2.4 DIFFERENCE BETWEEN LOGICAL DATA INDEPENDENCE AND PHYSICAL

DATA INDEPENDENCE

2.5 COMPONENTS OF A DBMS

2.6 DATA DICTIONARY

2.7 DBMS LANGUAGES

2. INTRODUCTION

Architecture of Database Management System: The architecture of DBMS is a

framework for describing database concepts and specifies the structure of the database

system. It describes Junctions of each component and describes how these components

communicate with each other in a logical manner.

The database management system Is a sophisticated software application which is

designed to provide interface to the user so that user can perform different operations on

database with ease. The design of a database management system highly depends on its

architecture. It can be centralized or decentralized or hierarchical depending upon the

type of applications. Its architecture can be single tier or multi-tier. The multi-tier

architecture divides the database management system into related but independent

different modules which can be independently modified, altered, changed or replaced. In

case of multi-tier architecture, the best suitable architecture is 3-tier architecture.

2.1 THREE LEVEL ARCHITECTURE OF DBMS

Database management system is described in three different levels which have

separate functioning and working. These three different levels are named as external

level, conceptual level and internal level. These levels are shown in a serial view of the

architecture:

Fig. 2.1: Three Level Architecture (an Aerial view)

2.1.1 Objectives of Architecture

1. It should provide an interface to make changes into the structure of database

without changing the application program at external schema.

2. Each user should be able to change the way he view the data and his change

should not affect other users.

3. User should not directly deal with the physical database storage.

4. Users are independent of the storage complexities like indexing constraints etc. of

the database

6. The conceptual structure of the database has no effect due to the change of the

physical storage devices.

7. DBA should be able to change the storage structure and conceptual structure

without affecting user's and his view level.

The core objective to design three levels is to provide data independence and

physical independence. It is required to provide an easy to use interface to the end users.

2.1.2 External Level/External View

The external level is more concerned with the way in which the data is viewed by

individual users. It is closer to the user and provides an interface to interact with the

database. Each user has different requirement of the data so DBMS presents each user

with a shared or single view or schema of the data. In external level, the different views

may have different representations of the same data. For example, one user may view

date in the form as (day-month-, year) while another may view as (year-month-day).

Similar one view of data may show detail of employee with fields (Name, DOB,

Address) and other view may show employee detail with salary (Name, DOB, Basic Pay,

HRA, DA). The external view is user specific and provides an abstraction of data which

helps to user to view important data and hide additional information.

Characteristics/Functions/Key Points of External Level

1. The external level is at the highest level of database abstraction where only those

data is visible to the user which is concerned to the user at that time.

2. External view is user's view of database. It may provide limited and complete

access to the database.

3. External schema consists of definition of logical records and their relationships in

the external view.

4. External level is also known as view level and closest to the end users. It acts-as

an interface to access data. User need not to know the details of data structure and

physical storage.

5. External level provides the way in which individual users can view data according

to his/her requirements i.e. one user may view data in the form (day, month, year)

while another user may view data as (year, month, day).

6. Same database can have different views for different users.

7. Its core purpose is to provide user friendly interface to the end user.

Fig. 2.2: Three Level Architecture with Different Schemas

2.1.3 Conceptual Level/Community User View/Logical Level

Conceptual Level represents the entire database. Conceptual schema describes the

records and relationship included in the Conceptual view. The external level is concerned

with individual user view whereas the conceptual level represents community user view.

The conceptual schema hides the details of physical structure and concentrates on

describing entities, data type, relationships, user operations and constraints. The view is

normally more stable than the other two views. The ultimate objective of the conceptual

schema is to describe the complete enterprise-not just its data but also how that data is

used, how it flows from point to point within the enterprise.

Characteristic/Functions/Key Points of Conceptual Level

1. Conceptual level is also known as middle level. It is created and maintained by

DBA.

2. The conceptual schema hides the details of physical structure and concentrates on

describing data type entities, their attributes and relationships, user operations.

3. It implements constraint on fie data.

4. At this level, different security and integrity rules can be imposed on data.

5. The semantic information about the data can be represented in conceptual view.

6. Different types of validation checks to retain data consistency and integrity are

enforced at conceptual level.

7. It describes what data is stored in database and relationship among database.

2.1.4 Internal Level/Storage View/Physical Level

The internal level is closest to the physical storage which is concerned with the

way in which the data is actually stored. The internal view is described by means of the

internal schema, which not only defines the various stored record types but also specifies

the indexes are in and so on.

Characteristic/Functions/Key Points of Internal Level

1. It is the physical representation of data.

2. It describes how the data is stored in database. It manages storage space allocation

for data.

3. It concern with the physical implementation of the database to achieve optimal

runtime performance and space utilization.

4. Record description for storage with stored sizes for data items.

5. Access path e.g. specification of primary and secondary keys, index and pointers.

6. Data compression and encryption techniques.

7. Optimization of the internal structures.

8. It builds the indexer, retrieve the data and so on.

2.1.5 Database Schema and Database Instance

While working with any data model, it is necessary to distinguish between the

overall design or description of the database (database schema) and the database itself.

The database schema is also known as intension of the database, and is specified while

designing the database.

1. Schema

A schema is plan of the database that gives the names of the entities and attributes

and the relationship among them. A schema includes the definition of the database name,

the record type and the components that make up the records. Alternatively, it is defined

as a framework into which the values of the data items are fitted. The values fitted into

the framework changes regularly but the format of schema remains the same.

Key Points of Schema

• The plan or scheme of the database is known as Schema.

• It gives the names of the entities, attributes and relationship among them.

• It is the framework into which the values of data items are fitted.

• Overall description of database is known as database schema.

Types of Schema

Generally, a schema can be partitioned into/three categories which are as follows:

Fig. 2.3: Types of Schema

(a) External Schema: The external schema is concerned with the description

of external view, correspond to different view according to the

requirements of the users.

(b) Conceptual Schema: The conceptual schema is concerned with the

description of all the entities, attributes and relationships along with the

constraints. The logical (conceptual) schema is concerned with exploiting

the data structures offered by the DBMS so that the schema becomes

understandable to the computer.

(c) Physical Schema: The physical schema is concerned with the manner in

which the conceptual database gets represented in the computer as a stored

database. It is hidden behind the conceptual schema and can usually be

modified without affecting the application programs.

2. Subschema

• A subschema is a subset of the schema having the same properties that a schema

has.

• It identifies a subset of areas, sets, records, and data names defined in the database

schema available to user sessions.

• It allows the user to view only that part of the database that is of interest to him.

• It defines the portion of the database as seen by the application programs and the

application programs can have different view of data stored in the database.

• The different application programs can change their respective subschema without

affecting other's subschema or view.

3. Instances

• The data in the database at a particular moment of time is called an instance or a

database state.

• In a given instance, each schema construct has its own current set of instances.

Many instances or database states can be constructed to correspond to a particular

database schema.

• Every time we update (i.e., insert, delete or modify) the value of a data item in a

record, one state of the database changes into another state.

The following figure shows an instance of the ITEM relation in a database

schema.

2.1.6 Mapping Between Different Views

Mapping: In three schema architecture, each user group refers only to its own

external view. Whenever a user specifies a request to generate a new external view, the

DBMS must transform the request specified at external level into a request at conceptual

level, and then into a request at physical level. If the user requests for data retrieval, the

data extracted from the database must be presented according to the need of the user. This

process of transforming the requests and results between various levels of DBMS

architecture is known as mapping.

The DBMS is responsible for mapping between the three types of schema. Two

mapping are required in database systems which are as follows:

(a) External/Conceptual Mapping: Each external scheme is related to the

conceptual schema by the external/conceptual mapping. The external/

conceptual mapping gives the correspondence among the records and the

relationships of the external and conceptual views. A given external record

could be derived from a number of conceptual records.

(b) Conceptual/Internal Mapping: Conceptual schema is related to the

internal schema by the conceptual/internal mapping. The conceptual/

internal mapping specifies the method of deriving the conceptual record

from the physical database.

Advantages of View Mapping

1. Each user is able to access the same data but have a different customized view of

the data as per their own needs.

2. A user can change his/her view and this change does not affect other user views.

3. There user's interaction with the database is independent of physical data storage

organization.

4. The database administrator is able to change the database storage structure without

affecting the user's view.

5. The database administrator is able to change the conceptual structure of the

database without affecting all users.

6. The database administrator can change existing storage devices with the new

storage devices without affecting others user's.

2.2 EXAMPLE OF THREE LEVEL ARCHITECTURE

To understand the three-schema architecture, consider the three levels of the

BOOK file in Online Book database as shown in Figure this figure, two views (view 1

and view 2) of the BOOK file have been defined at the external level. Different database

users can see these views. The details of the data types are hidden from the users. At the

conceptual level, the BOOK records are described by a type definition. The application

programmers and the DBA generally work at this level of abstraction. At the internal

level, the BOOK records are described as a block of consecutive storage locations such as

words or bytes. The database users and the application programmers are not aware of

these details; however, the DBA may be aware of certain details of the physical

organization of the data.

Fig. 2.4: Three Level Schema Architecture

2.3 DATA INDEPENDENCE

Data Independence: The ability of a database management system to modify its

Schema definition at one level without affecting a Schema definition at the next level is

called data Independence. It provides flexibility to make changes at one Schema level

without affecting the next level Schema.

Key Points of Data Independence

• The main advantage of three-schema architecture is that it provides data

independence.

• Data independence Is the ability to change the, schema at one level of the database

system without having to change the schema at the other levels.

• The data independence deals with independence between the way the data is

presented, structured and stored. It provides independence to make changes in one

level without affecting other levels.

• Data independence means upper levels are unaffected by the changes in lower

level.

• For example, DBMS may change the structure of the data without having to

change application program. It is possible due to mapping between three levels

which enable the user to make changes at one level without affecting the next level

of architecture.

• Data Independence implies that the application programs should not need to know

any of the following:

— Ordering of data fields in a record

— The size of the record

— The size of the field

— The format and type of each data item

— The type of data structured used to store the data.

• The three level DBMS architecture provides two type of data independence. The

first is called logical data independence and second is called physical data

independence. The logical independence is enabled the user to change the

conceptual view without affecting the external view. Whereas, Physical data

independence is the idea to make changes into internal view without affecting the

conceptual or external views. These two types of data independence are discussed

in detail below:

Fig. 2.5: Types of Data Independence Logical Data Independence*

• It is the ability to change the conceptual schema without affecting the external

schemas or application programs.

• The conceptual schema may be changed due to change in constraints or addition

of new data item or removal of existing data item, etc., from the database.

• The separation of the external level from the conceptual level enables the users to

make changes at the conceptual level without affecting the external level or the

application programs.

• For Example: The name field in conceptual view is stored as first hame, middle

name and last name whereas in external view, it remains to be as a single name

field.

• It indicates that the conceptual schema can be changes without affecting the

existing external schema.

• It requires the flexibility-in the design of database.

• The programmer is required to make modification in the design as per the

requirements.

(b) Physical data independence:

• It is the ability to change the internal schema without affecting the conceptual or

external schema.

• An internal schema may be changed due to several reasons such as for creating

additional access structure, changing the storage structure, etc.

• The separation of internal schema from the conceptual schema facilitates physical

data independence.

• For Example: The location of the database, if changed from C drive to D drive will

not affect the conceptual view or external view as the commands are independent

of the location of the database.

• It indicates that the physical storage structure used for thedata could be change

without affecting the conceptual schema.

• The storage structure and access methods used to retrieve of the data from

physical storage medium are not concerned with conceptual schema.

Logical data independence is more difficult to achieve than the physical data

independence because the application programs are always dependent on the logical

structure of the database. Therefore, the change in the logical structure of the database

may require change in the application programs.

2.4 DIFFERENCE BETWEEN LOGICAL DATA INDEPENDENCE AND

PHYSICAL DATA INDEPENDENCE

Sr.

No.

Logical Data Independence Physical Data Independence

1. Whenever, there is a change or

modification at the conceptual level

without t affecting the user level or

external level, it is "known as logical

data independence.

Whenever, the changes are made at the

internal level without affecting the above

layers, it is known as physical data

independence.

2. It is concerned with the structure of the

data or changing the data definition

It is concerned with the storage of the

data.

3. It is concerned with the conceptual

schema

It is concerned with the internal schema.

4. Application program need not be change

if new fields are added

Physical database is concerned with the

change of the storage device

5. It is very difficult to retrieve the data

because data re heavily dependent on the

It is easy to retrieve the data.

 logical structure of data

2.5 COMPONENTS OF A DBMS

The DBMS accepts the SQL commands generated from a variety of user

interfaces, produces query evaluation these plans against the database, and returns the

answers.

1. Query processor: The query processor transforms users queries into a

series of low-level instructions directed to the run time database manager. It is used to

interpret the online user's query and convert it into an efficient series of operations in a

form capable of being sent to the run time data manager for execution. The query

processor uses the data dictionary to find the structure of the relevant portion of the

database and uses this information in modifying the query and preparing an optimal plan

to access the database.

2. Run time database manager: Run time database manager is the central

software component of the DBMS, which interfaces with user-submitted application

programs and queries. It handles database access at run time. It converts operations in

user's queries coming directly via the query processor or indirectly via an application

program from the user's logical view to a physical file system. It-accepts queries and

examines the external and conceptual schemas to determine what conceptual records are

required to satisfy the users request. The run time data manager then places a call to the

physical database to perform the request. It enforces constraints to maintain-the

consistency and integrity of thewell as its security. It also performs backing and recovery

operations. Run time database manager is sometimes referred to as the database control

system and has the following components:

(i) Authorization control: The authorization control module checks that the

user has necessary authorization to carry out the required operation.

(ii) Command processor: The command processor processes the queries

passed by authorization control module.

(iii) Integrity checker: The integrity checker checks for necessary

integrity constraints for all the requested operations that changes the

database.

(iv) Query optimizer: The query optimizer determines an optimal strategy for

the query execution. It uses information on how the data is stored to

produce an efficient execution plan for evaluating query.

(v) Transaction manager: The transaction manager performs the required

processing of operations it receives from transactions. It ensures that (a)

transactions request and release locks according to a suitable locking

protocol and (b) schedules the execution of transactions.

(vi) Scheduler: The scheduler is responsible for ensuring that concurrent

operations on the database proceed without conflicting with one another. It

controls the relative order in which transaction operations are executed.

(vii) Data manager: The data manager is responsible for the actual handling of

data in the database. This module has the following components:

(a) Recovery manager: The recovery manager ensures that the database

remains in a consistent state in the presence of failures. It is responsible for

(a) transaction commit and abort operations, (b) maintaining a log, and (c)

restoring the system to a consistent state after a crash.

(b) Buffer manager: The buffer manager is responsible for the transfer of data

between the main memory and secondary storage (such as disk or tape). It

brings in pages from the disk to the main memory as needed in response to

read user requests. Buffer manager is sometimes referred as the cache

manager.

3. DML processor: Using a DML compiler, the DML processor converts the

DML statements embedded in an application program into standard function calls in the

host language. The DML compiler converts the DML statements written in a host

programming language into object code for database access. The DML processor must

interact with the query processor to generate the appropriate code.

4. DDL processor: Using a DDL compiler, the DDL processor converts the -

DDL statements into a set of tables containing metadata. These tables contain the

metadata concerning the database and are in a form that can be used by other components

of the DBMS. These tables are then stored in the system catalog while control

information is stored in data file headers. The DDL compiler processes schema

definitions, specified in the DDL and stores description of the schema (metadata) in the

DBMS system catalog. The system catalog includes information such as the names of

data files, data items, storage details of each data file, mapping information amongst

schemas, and constraints.

2.6 DATA DICTIONARY

1. Data dictionary is also known as Meta data. A metadata is the data about

the data. It is the self-describing nature of the database that provides program-data

independence. It is also called as the System Catalog.

2. Data Dictionary is a repository-of information about a database that

documents data elements of a database. It stores information about the database,

attribute names and definitions for each table in the database

3. It holds the following information about each data element in the databases,

it normally includes:

• Name • Type

• Range of values • Source

• Access authorization

4. Data dictionary is the integral part of the DBMS. Maintaining the data

dictionary is the responsibility of DBA (Database Administrator).

5. The most general structure of data dictionary is shown in figure....

Fig. 2.10: Data Dictionary

6. Data dictionary is usually a part of the system catalog that is generated for

each database. A useful data dictionary system usually stores and manages the following

types of information:

• Descriptions of the schema of the database.

• Detailed information on physical database design, such as storage

structures, access paths and file and record sizes.

• Description of the database users, their responsibilities and their access

rights.

• High-level descriptions of the database transactions and applications and of

the relationships of users to transactions.

• The relationship between database transactions and the data items

referenced by them. This is useful in determining which transactions are

affected when certain data definitions are changed.

• Usage statistics such as frequencies of queries and transactions and access

counts to different portions of the database.

• Data dictionary provides the name of a data element, its description and

data structure in which it may be found.

• Data dictionary provides great assistance in producing a report of where a

data element is used in all programs that mention it.

• It is also possible to search for a data name, given keywords that describe

the name. For example, one might want to determine the name of a variable

that stands for net pay. Entering keywords would produce a list of possible

identifiers and their definitions. Using keywords one can search the

dictionary to locate the proper identifier to use in a program.

7. Data dictionary is used by developers to develop the programs, queries,

controls-and procedures to manage and manipulate the data. It is available to database

administrators (DBAs), designers and authorized user as on-line system documentation.

This improves the control of database administrators (DBAs) over the information system

and the user's understanding and use of the system.

2.7 DBMS LANGUAGES

1. The main objective of a database management system is to allow its users to

perform a number of operations on the database such as insert, delete, and retrieve

data in abstract of data.

2. To provide the various facilities to different types of users, a DBMS normally

provides one or more specialized programming languages called Database (or

DBMS) Languages.

3. The DBMS mainly provides two database languages, namely, data definition

language and data manipulation language to implement the databases.

4. Data definition language (DDL) is used for defining the database schema. The

DBMS comprises DDL compiler that identifies and stores the schema description

in the DBMS catalog.

5. Data manipulation language (DML) is used to manipulate the database.

The following are the DBMS languages:

1. Data Definition Language: DDL is used to specify the structure of table.

Sr. Need And Usage The SQL DDL Statement

1 Create schema objects CREATE

2 Alter schema objects ALTER

3 Delete schema objects DROP

4 Rename schema objects RENAME

We will discuss these statement in the chapter 10.

2. Data Manipulation Language: The DBMS provides data manipulation

language (DML) that enables users to retrieve and manipulate the data. The statement

which is used to retrieve the information is called a query. The part of the DML used to

retrieve the information is called a query language.

S No. Need And Usage The SQL DDL Statement

1 Remove rows from tables or views DELETE

2 Add new rows of data into table or view INSERT

3 Retrieve data from one or more tables SELECT

4 Change columns values in existing rows of

a table or view

UPDATE

We will discuss these statement in the chapter 10.

3. Data Control Language-(DCL): DCL statements control access to data

and the database using statements such as GRANT and REVOKE. A privilege can either

be granted to a user with the help of GRANT statement. We can also revoke these

statements by using REVOKES command.

S. NO. Need and Usage The SQL DDL Statement

1 Grant and take away privileges and roles GRANT and REVOKE

2 Add a comment to the data dictionary COMMENT

We will discuss these statement in the chapter 10.

Questions

1. Discuss the concept of data independence and explain its importance in a database

environment.

2. What is logical data independence and why is it important?

3. What is the difference between physical data independence and logical data

independence?

4. Explain the difference between external, conceptual and internal schemas. How

are these different schema layers related to the concepts of physical and logical

data independence?

5. Describe the structure of a DBMS.

6. Describe the main components of a DBMS with a neat sketch, explain the

structure of DBMS.

7. What do you mean by a data model? Describe the different types of data models

used.

8. Explain the following with their advantages and disadvantages:

(a) Hierarchical database model

(b) Network database model E-R data models

(c) Relational database model

(d) E-R data models

(e) Object-oriented data model.

9. Define the following terms:

(a) Data independence

(b) Query processor

(c) DDL processor

(d) DML processor.

(e) Run time database manager.

10. What is meant by the term client/server architecture and what are the advantages

and disadvantages of this approach?

11. Compare and contrast the features of hierarchical, network and relational data

models. What business needs led to the development of each of them?

12. Differentiate between schema, subschema and instances.

13. Explain the advantages and disadvantages of a centralised DBMS.

14. Explain the advantages and disadvantages of a parallel DBMS.

15. Explain the advantages and disadvantages of a distributed DBMS.

16. Explain data dictionary in detail.

UNIT 3 : DATA MODELS

COURSE: DBMS

3. INTRODUCTION

3.0 Evolution of Major Data Models

3.1 RDBMS

3.2 E.F. CODD'S RULES

3.3 COMPARISON BETWEEN DBMS AND RDBMS

3.4 DATA MODEL

3.5 CLASSIFICATION OF DATA MODEL

3.6 RECORD BASED MODELS

3.6.1 Hierarchical Model

3.6.2 Network Model

3.6.3 Relational Model

3.7 PHYSICAL MODEL

3.8 OBJECT BASED MODELS

3.8.1 E-R Model (Entity Relationship Model)

3.8.2 Object Oriented Model

3.8.3 Semantic Model

3.8.4 Functional Model

3.9 COMPARISON OF DATA MODELS

3.10 OTHER TERMS USED IN E-R MODEL

INTRODUCTION

A Data Model defines the logical design of the data. It describes the relationships

between different parts of the data. Data model tells how the logical structure of a

database is modeled. Data Models are fundamental entities to introduce abstraction in

DBMS. Data models define how data is connected to each other and how it will be

processed and stored inside the system.

Evolution of Major Data Models

The historical literature reported drastic changes in the year 1970-1994. The Edgar

F. Codd, in year 1970 disclose new concept of data representation. Mr. Codd suggested

that all data in a database could be represented as a tabular structure (tables with columns

and rows, which he called relations) and that these relations could be accessed using a

high-level nonprocedural language. This research was result of several Relational DBMS

like Oracle, Informix, Ingres and DB2. The following was high lights related to evolution

database:

• 1980s: The several vendors had developed OODBMSs like Object Design,

Versant, O2 and Objectivity. The OODBMSs were no threat in the late 1980s

to the now big commercial vendors developing and selling hierarchical,

network or relational databases.

• 1990s: In 1990s. The Object Database Management Group was founded, mainly

&thanks to Rick Cattell of JavaSoft. The Green Team started the

development of a new programming language which was loosely based on

C++.

The language was named Oak after the trees outside the office window of the

language designer - James Gosling.

• 1993s to till date: In 1993 several vendors of OODBMSs agreed upon an

OODBMS standard called ODMG-93. The relational databases already had

its standard-SQL-92, defined by its ANSI committee and ISO. The concept

of internet, xml and other database management system was evolved in the

time span. The detailed summery is represented in table below:

Generation Time Model Examples Comments

First
1960s-

1970s

File .

system
VMS/VSAM

Used mainly on IBM mainframe system

Managed records, not relationships

Second

1970s

Hierarchical

and network

IDS --II

IMS ADABAS

Early database systems. Navigational access

Third
Mid-1970s

to present

Relational
DB2 Oracle

MS SQL-Server

Conceptual simplicity Entity relationship

(ER) modeling support for relational data

modeling

Fourth
Mid-1980s

to present

Object oriented

Extended

Relational

Versant VFS/Fast

Objects

Objectivity/DB

Support complex data Extended relational

products support objects and data

warehousing Web databases become common

Next

Generation

Present to

future

XML

dbXML Tamino DB2

UDB Oracle

10gMS SQL

Server

Organization and management of

unstructured data Relational and object

modelsaddsupport for XML documents

Table 3.1: A brief summary of how the major data models where developed

3.1 RDBMS

1. RDBMS stands for "Relational Database Management System9',

2. '“RDBMS is a DBMS in which data is stored in the formthe form of tables and

the relationship among the data is also stored in the form of tables.”

3. RDBMS also provide relational operators to manipulate the data stored into the

database tables.

4. It is based on the relational model and was introduced by E.F. Codd.

5. E.F. Codd, the famous mathematician has introduced 12 rules (known as Codd's

rules) toassist a database product to qualify a RDBMS. - .

6. RDBMSproduct has to satisfy at least 6 of the 12 rules, of Codd to be accepted as

a full-fledged RDBMS.

7. Examples of RDBMS are: Oracle, Sybase, SQL- Server.

8. In short, all the information in RDBMS should be presented in tabular form and it

follows Codd's rules.

3.2 E.F. CODD'S RULES

1. E.R Codd the famous mathematician has introduced 12 rules for the relational

model for databases commonly known as Codd'srules.

2. These rules define what is required for a DBMS to be considered RDBMS.

3. The Codd's rules are as follows:

(a) InformationRule:Every information in RDBMS is represented in the form

of tables.

(b) Guaranteed Access Rule:Every information in RDBMS is accessed by

usingcombination of table name and primary key. A primary key helps to identify a

rowname and column name.

(c) Systematic Treatment of Null Values: RDBMS supports null valuesfor

representingmissingorInapplicable information.

(d) The Description Rule:The database description is represented at the

logicallevel in the same way as ordinary data. The authorized users can apply the

samerelational language for its manipulation as they apply to the regular data.

(e) The Comprehensive Data Sublanguage Rule: RDBMS supports many

languages which allow users to define tables, query and update the data and set integrity

constraints.

(f) The View Updating Rule:All the viewsthat are theoretically updatable

must be updatable by the system.

(g) High Level Insert, Update and Delete: The system must support insert,

update and delete operations.

(h) Physical Data Independence:It is the ability to change the internal schema

(PhysicalLevel) without affecting the conceptual/logical or external schema.

(i) Logical Data Independence:Logical data independence is more difficult to

achievethan the physical data independence. It is the ability to change the

conceptual/logical schema without affecting the external schema.

(j) Integrity Independence:Integrity constraints should be specified

separately fromapplication programs and stored in the catalog. Integrity constraints can

be changedwithout affecting the application programs.

(k) Distribution Independence:User should not have to be aware of whether a

databaseis distributedat different sites or not.

(l) TheNon-SubversionRule: If the RDBMS has a language that accesses the

information of a record at a time, this language should not be used to bypass the

integrityconstraints. .

3.3 COMPARISON BETWEEN DBMS AND RDBMS

DBMS RDBMS

1. It stands for "Database Management

System."

It stands for "Relational Database

Management System."

2. It can store data in any format

(graph, table, tree etc.)

It can store data only in tabular form.

3. It does not support client/server

architecture.

It supports client/server architecture.

4. It does not satisfy Codd's rules. It satisfyCodd's rules.

5. It requires low software and

hardware requirements.

It requires high software and hardware

requirements.

6. It can maintain only single user at a

time. It supports single user.

It can maintain many users at a time. It

supports multi-user.

7. It is designed for small organizations

with small amount of data, where security

of data is not a major issue.

It is designed for large organization with

large amount of data where security of data

is a major issue.

8. It does not support referential

constraints.

It supports referential integrity constraints.

9. Examples of DBMS: Dbase, Foxpro Examples of RDBMS: Oracle, Sybase,

SQL-Server.

3.4 DATA MODEL

1. A model is a representation of reality, 'real world' objects and events,and their

association.

2. A data model represents the organization itself.

3. Data model can be defined as an integrated collection of concepts for describing

and manipulating data, relationships between data, and constraints on the data in

an organization.

4. The purpose of a data model is to represent data and to make the data

understandable.

Objectives of Data Model

• The main objective of database system is to highlight only the essential features

and to hide the storage and data organization details from the user.

• A database model provides the necessary means to achieve data abstraction.

• A data, model is an abstract model that describes how the data is represented and

used.

• A data model consists of a set of data structures and conceptual tools that is used

todescribe the structure (data types, relationships, and constraints) of a

database.

• A data model not only describes the structure of the data, it also defines a set of

operations that can be performed on the data.

• A data model generally consists of data model theory, which is a formal

description of howdata may be structured and used.

• The process of applying a data model theory to create a data model instance is

known asdata modeling.

3.5 CLASSIFICATION OF DATA MODEL

Data Model is a collection of concepts to provide abstraction into DBMS so that

superfluous details can be hide while highlighting important detail of data entities. It

defines the logical design of data and establishes relationship between them. Data

representation provides mechanisms to structure data for entities being modeled and

allow a set of operations to be performed on them. A number of Models has been

developed which are further categorized as below

1. Object based Logical Model

2. Record based Logical Model

3. Physical Data Model

Depending on the concept they use to model the structure of the database, the data

models are categorized. The following logical tree display detailed classification:

Fig. 3.1: Classification of Data Model

3.6 RECORD BASED MODELS

A record-based data models are used to specify the overall logical structures of the

database. This model is used describing data at logical and view level. In the record based

models, the database consists of a number of fixed-format records possibly of different

types. Each record type defines a fixed number of fields, each typically of a fixed length.

Data integrity constraints cannot be explicitly specified using record-based data models.

There are three principle types of record-based data models:

3.6.1 Hierarchical Model

1. It was developed jointly by North American Rokwell Company and IBM.

2. It is the oldest model.

3. It follows tree as its basic structure.

4. Node at highest level is called Root.

5. A node may have any no. of children but each child node has only one parent.

6. Children of same parents are called siblings.

7. Anode that has no child is leaf node.

8. Representation of hierarchical model with suitable diagram

• Faculty is on root node containing four attributes (Fid, Fname, Dept, Rank)

• Class is child of faculty node contains (Course no., room) attributes.

• There is one to many relationship between each faculty record and its class record.

• There is one to many relationship between each class record and its student record.

Operations on Hierarchical Model

(a) Insertion: A new class says CSO3 cannot be inserted unless some faculty

is available at root level because without parent we can't insert any child node. This

operation is used to insert a new record into the database. There are two possibilities:

(i) If the inserted, record is a root record then it creates new tree with the new

record asthe root

(ii) If the inserted record is a child record, then we need to determine its parent

first because no child record can exist without a parent record. So, insertion

problem exists for the children who have no parents.

(b) Deletion:If we want to remove the class 100 then student Rohit will also

have to be removed. This operation is used to delete a record from the database. To delete

a record, we must first make it the current record of the database and then delete it. Here

also, there are two possibilities:

(i) If the deleted record has no child node. It can be deleted easily.

(ii) If the deleted record has one or more child nodes, then the deletion process

will deleteall the child nodes also. This may lead to loss of Information

also.

(c) Update: If we want to updated the room 10, then we have to find all the

recordsrelated to room 10 and have to modify. This operation is used to update a record.

There are twopossibilities:

(i) If the record to be updated is a parent record, then updating it requires only

one updation operation to be performed because there is only one

occurrence of a parent record.

(ii) If the record to be updated is a child record, multiple updations may be

required. If itnot happens, this may lead to inconsistency in the database.

(d) Record Retrieval: Recordretrieval methods for hierarchical model are

complex and asymmetric. Retrieval means first searching the required record and then

fetching it. Retrievalinvolves pointers from the parent node to the-child node in the tree

and hence is complex andtime consuming.

Advantages of Hierarchical Model

1. Simplicity:The relationship between the various layers is logically simple. Thus

the designof a hierarchical database is simple.

2. Data Security: Hierarchical model was the first database model that offered the

data security that is provided and enforced by the DBMS.

3. Data Integrity: Hierarchical model is based on the parent/child there is

always a link between the parent segment and the child segments under it.

Thechild segments arealways automatically referred by its parents, so this model

promotes data integrity.

4. Efficiency:The hierarchical database model is a very efficient one when the users

require large number of transactions, using data whose relationships are fixed.

Disadvantages of Hierarchical Model

1. Implementation Complexity: Although the hierarchical databasemodel is

conceptuallysimple and easy to design, it is quite complex to implement, the

database designers shouldhave very good knowledge of the physical data storage

characteristics.

2. Lack ofStructural Independence:Structural independence exists when the

changes to the database structure does not affect the DBMS's ability to access data.

Thus in a hierarchical database the benefits of data independence is limited by

structural dependence.

3. Programs Complexity: Due to the structural dependence and the navigational

structural, the application programs and the end users must know precisely how

the data is distributed physically in the database in order to access data. This

requires knowledge of complex painter systems, which is often beyond the grasp

of ordinary users.

4. Operational Limitations: Hierarchical model suffers from the Insert anomalies,

anomalies and deletion anomalies, also the retrieval operation is complex and

asymmetric, thus hierarchical model is not suitable for all the cases.

5. Implementation Limitations: Many of the common relationships do not confirm

to the 1'N format required by the hierarchical model. The many-to-many (N;N)

relationships, which are more common in real life are very difficult to implement

in a hierarchical model.

3.6.2 Network Model

1. Data in this model is represented by Links.

2. It looks like a tree structure containing nodes.

3. Every node may have one or more than one parent node.

4. Dependent node is called child node.

Operations on Network Model

(a) Insert Operation: Insertion is easy i.e. supplier B supplies new part then we have

to create a new link only. No other updation is required.

(b) Delete Operation: If we want to delete the information of any part, say supplier A

doesn't want to supply part 1 now, so we have to remove only the link.

(c) Updation Operation: Updation is also easy. Suppose supplier A doesn't supply

part 2 it supplies part 4 now.

(d) Retrieval Operation: Record retrieval method for network model

aresymmetricbut complex.

Advantages of Network Model

1. Conceptual Simplicity: Like hierarchical model; the network model is also

conceptually simple and easy to design.

2. Capability to handle mass relationship types: The network model can handle

the one-to-many (1;N) and many to many (N:N) relationships, which is a real help

in modeling the real life situations.

3. Ease of data access: The data access is easier than and flexible than the

hierarchical model.

4. Data Integrity: The network model does not allow a member to exist without an

owner. Thus a user must first define the owner record and then the member record.

This ensures the data integrity.

5. Data Independence: The network model is better than the hierarchical model in

isolating the programs from the complex physical storage details.

6. Database Standard: One of the major drawbacks of the hierarchical model was

the nonavailability of universal standards for database design and modeling.

All the network database management systems conformed to these standards.

These standards included a Data Definition Language [DDL] and the Data Manipulation

Language [DML]9 thus quality enhancing database administration and portability.

Disadvantages of Network Model

The network database model was significantly better than the hierarchical database

model, it also had many drawbacks. These are

1. System Complexity: All the records are maintained using pointers and hence

the whole database structure becomes very complex.

2. Operational Anomalies: Network model's insertion, deletion and updating

operations of any record require large number of pointer adjustments, which

makes its implementation very complex and complicated.

3. Absence of Structural Independence: If changes are mode to the database

structure then all the application programs need to be modified before they can

access data. Thus, every though the network database model succeeds in

achieving data independence, it still fails to achieve structural independence.

Note: We can conclude that network model does not suffers from the Insert anomalies,

Update anomalies and Deletion anomalies. The retrieval operation is symmetric, as

compared to hierarchical model, but the main disadvantage is complexity of the model.

Network Hierarchical

Each child node have only one parent. Each child node may have more than one parent.

Hierarchical model records are

organized as collection of trees.

Network model they are represented as arbitrary

graphs.

3.6.3 Relational Model

1. It is primary data model for commercial data processing.The relational model was

proposed by E.F.Codd of the IBM in 1972.

2. Relational model is a collection of tables. Tables are also known as

relations.Therefore it is known as relational model.

3. Relational model represents the database as a collection of relations. Each relation

(table)is a collection of row and columns.

4. Each table has a unique, name in database.

5. Columns are called attributes and rows are called tuples.

6. For each attribute there is a set of permitted values called domain.

7. Attribute name will be unique in a table.

8. Domain value can be NULL which shows that the value is unknown or does not

exist.

9. The order of attribute has no significance. We can arrange attributes in any order.

10. We can insert record in any order.

11. Representation of data in Relational Model: A relational database consists of any

number of relations. We can represent relation schemes by giving the name of the

relation, followed by the attribute names in parenthesis.

Note: We will study Relational Model in detail in Unit-4

3.7 PHYSICAL MODEL

Physical model describes the in terms of a collection of files, indices, and other

storage structures such as record formats, record ordering, and access paths. This model

specifies how the database will be executed in a particular DBMS software such as

Oracle, Sybase, etc., by taking into account the facilities and constraints of a given

database management system. It also describes how the is stored on disk. Physical

models are used for a higher-level description of storage structure and access mechanism.

They describe how data is stored in thecomputer, representinginformation such as record

structures, record orderings and access paths. It is possible to implement the database at

system level using physical data models. There are not as many physical data models so

far. The most common physical data models are as follows:

• Unifying model

• Frame memory model.

3.8 OBJECT BASED MODELS

The object based models use the concepts of entities or objects and relationships

among them. An entity is a distinct object (a person, place, concept, and event) in the

organization that is to be represented In the database. An attribute is a property that

describes some aspect of the object that we wish to recordand a relationship is an

association between 'entitles. It providesflexible structuring capabilities and allows data

constraints to be specified explicitly. The object based logical model are classified as

follows:

1. E-RModel

2. Object Oriented Model

3. Semantic Model

4. Functional Model

3.8.1 E-R Model (Entity Relationship Model)

E-R model is an effective and standard method of communication amongst

different designers, programmers and end-users who tend to view data and its use in

different ways. It is a non- technical method, which is free from ambiguities and provides

a standard and a logical way of visualizing the data. It gives precise understanding of the

nature of the data and how it is used by the enterprise. It provides useful concepts that

allow the database designers to move from an informal description of what users want

from their database, to a more detailed and precise description that can be implemented in

a database management system. Thus, E-R modeling is an important technique for any

database designer to master. It has found wide acceptance in database design. A basic

concept of E-R model has been introduced and few examples of E-R diagram of an

enterprise database have been illustrated. The ER model is based on a concept of a real

world entities and relationships among these entities. It can be used developed database

design by allowing specification schema, which represents the overall logical structure of

a database. It is very useful in mapping the meanings and interactions of real-world

entities onto a conceptual schema.

1. E-R model is based on real world. It is a collection of basic objects, called entities

and of relationships among these objects (Entity).

2. E-R model employs three basic features:

• Entity

• Attributes

• Relationship

3. The overall logical structure of a database can be expressed graphically by an E-R

diagram, which is built up by the following components:

• Rectangle, which represent entity sets.

• Ellipses, which represent attributes.

• Diamonds, which represent relationships among entity sets.

• Lines, which link attributes to entity sets and entity sets to relationships.

Fig. 3.2: E-R Model

Entity: Customer and Account are entity.

Attribute: Customer name, customer city are attributes of customer entity.

Account number, balance are attributes of Account Entity.

Relation: Deposit is relationship among customer and Account.

I. ENTITY

• Entity is a thing which can be identified.

• Entity is a person, place thing event or concept which can be identified. We

can say about which we want to store information i.e. employee, student,

customer.

• Rectangle sign is used to represent the entity in E-R diagram.

• Entity can be of two types which are as follows:

Fig. 3.3: Types of Entity

(a) Weak Entity:

• Weak entity depends on some other entity.

• It can't exist if other entity on which is depends does not exist.

• It is represented by

• For example:

(b) Regular Entity/Strong Entity:

• Regular entity does not dependent on other entity.

• Its existence doesn't depend upon any other entity.

• It is represented by

• For example:

(c) Entity Set: It is a set of entities of the same type that share the same

properties (attributes) i.e. the set of all persons who are customer at same

bank.

(d) Entity Subtype and Super type: Entity can be sub or super i.e. we have an

Entity employee and employee can be programmer or operation.

Fig. 3.4. Super Entity and Sub Entity

II. ATTRIBUTE

• Attributes are properties of entity. They are also called columns.

• Entity is about which we want to store information and attribute is what

information we want to store.

• For example: If we want to store Name, City, and Salary information about

employee. Then employee is our entity and name, city, salary are attributes.

• Ellipse sign is used to represent attributes.

• Attribute can be of four types which are as follows:

Fig. 3.5 :Types of Attribues

(a) Single Attribute: Single attributes are those attributes which can't be divided into

sub parts i.e. Employee number is a simple attribute.

(b) Multi Valued Attribute: Multi valued attributes are those attribute which have

more than one value i.e. Phone number is a multi-valued attribute. One employee

may have more than one phone number.

(c) Derived Attribute: Derived attributes are those attributes whose value is derived

from another attribute. For example: value of age attribute can be drive (calculate)

from date of birth attribute and current date.

(d) Composite Attribute: Composite attributes are those attributes which can be

divided into parts. For example: Name attribute can be divided into First Name,

Middle Name and Last Name. Address attribute can be divided into street, city,

state, zip-code.

III. RELATIONSHIP

• It is used to connect the entities.

• The entities involved in given relationship are called participants.

• The no. of participants in a given relationship is called degree of

relationship.

• sign is used to represent relationship among entities.

• Deposit is a relationship among entity customer and entity account.

• Relationship can be of four types which are as follows:

Fig. 4.5: Types of Relationship

(a) One to One Relationship: In one to one relationship for one record in

entity A, there is exactly one record in entity B. For example: we have two entities

department and department head. There is one to one relationship because one

department will be under one head and one head will be appointed for one department.

(b) One to Many Relationships: In one to many relationships for one record

in entity A, there is more than one record in entity B. For example: We have two entities

department and employee. There is one to many relationships because there will be one

department in a company and more than one employee will work in that particular

department.

(c) Many to One Relationship: In many to one relationship, for many records

in entity A, there is only one record in entity B. For example: We have two entities

employee and department. There is many to one relationship because there will be many

employees in a single

(d) Many to Many Relationships: In many to many relationships, for many

record is an entity A, there will be many record in entity B. There is many to many

relationship because there will be many customers for many items.

Advantages of E-R Model

1. Straight forward relation representation: Having designed an E-R diagram for

a database application, the relational representation of database model becomes

relatively straight forward.

2. Easy conversion for E-R over Data Model: Conversion from E-R diagram to

network or hierarchical data model can easily be accomplished.

3. Graphical Representation for better understanding: An E-R model gives

graphical and diagrammatical representation of various entities, its attributes and

relationship between entities. This helps in understanding the data structure in easy

way, minimize the redundancy and other problem.

Disadvantages of E-R Model

1. Popular for high-level design: It is especially popular for high level design.

2. No Industry standard of Notation.

Difference between Strong Entity and Weak Entity

3.8.2 Object Oriented Model

The object oriented data model is an. adaptation of the object oriented

programming language paradigm to database systems. The model is based on the concept

of encapsulating data and code that operates on that data in an object. On the other hand,

the object-relational data model is an., extension of relational data model. It combines the

features of both the relational data model and object-oriented data model.

Object oriented data models for databases "extend the above mentioned data

modeling features of the object oriented paradigm The extensions include data integrity

constraints, persistence of data which allows transient data to be distinguished from

persistent data and support for collections.

Advantages of Object-Oriented Data Model

1. Capable of handling a large variety of data types: hierarchical, network or

relational), the object-oriented database are capable of storingdifferent types of

data, for example, pictures, voices, video, including text, numbers and soon.

2. Combining object-oriented programming with database technology:Object-

orienteddata model is capable of combining object-oriented programming with

database technologyand thus, providing an Integrated application development

system.

3. Improved productivity: Object-oriented data models provide powerful features

such asinheritance, polymorphism and dynamic binding that allow the users to

compose objects and provide solutions without writing object-specific code. These

features increase-theproductivity of the database application developers

significantly.

4. Improved data access: Object-oriented data model represents relationships

explicitly,supporting both navigationaland associative access to information. It

further improves the data access performance over relational-value-based

relationships.

Disadvantages of Object-Oriented Data Model

1. No precise definition: It is difficult to provide a precise definition of what

constitutes an object-oriented DBMS because the name has been applied to a

variety of products and prototypes, some of which differ considerably from one

another.

2. Difficult to maintain: The definition of objects is required to be changed

periodically and migration of existing databases to confirm to the new object

definition with change in organisational information needs. It possess real

challenge when changing object definitions and migrating databases.

3. Not suited for all applications: Object-oriented data models are used where there

is a need to manage complex relationships among data objects. They are especially

suited for specific applications such as engineering, e-commerce, medicines and so

on, and not for all applications. Its performance degrades and requires high

processing requirements when used for ordinary applications.

3.8.3 Semantic Model

This model is used to express greater interdependencies among entities of interest.

These independencies enable the models to represent the semantics of the data in the

database. The Semantic Data Model (SDM), like other data models, is a way of

structuring data to represent it in a logical way. SDM differs from other data models in

that it focuses on providing more meaning of the data itself, rather than only on the

relationships and attributes of the data.

SDM provides a high-level understanding of the data by abstracting it further

away from the physical aspects of data storage.

In SDM, an entity represents some aspect or item in the real world, such as a

student An entity is similar to a record in a relational system or an object in an object-

oriented system. These entities in SDM focus on types, which are more general, instead

of sets of data. In SDM, an entity is a very basic notion of a real-world or conceptual

object that is defined by a single attribute.

For instance, an SDM entity type might be person which would be a list of names

of people that are to be represented by the data. The objects in this domain would then

point to specific instances of a person that are represented by each person entity.

3.8.4 Functional Model

The functional data model describes those aspects of a system concerned with

transformations of values-functions, mappings, constraints and functional dependencies.

The functional data model describesthe computations within a system.

• It shows how output value is derived from input values without regard for the

orderwhich the values are computed. It also includes constraints among

values.

• It consists of multiple data flow diagrams.

• Data flow diagrams show the dependencies between values and computation of

output values from input values and functions, without regard for when the

functions are executed.

• Traditional computation concepts such as expression trees are examples of

functional models.

3.9 COMPARISON OF DATA MODELS

Sr.

No.

Hierarchical Model Network Data Model Relational Data Model

1. Hierarchical data model

represents data in a tree format

where Parent and Child

relationship is represented to

show association.

Network model represents data in

graphs where data is a record which

is linked by pointers.

Relational data model logically

represents data in Tabular form where

data is placed in row and column.

2. Many to many relationship

cannot be expressed in

hierarchical model

Many to many relationship can be

expressed in hierarchical model.

Many to many relationship can be

expressed in hierarchical model.

3. It is good for expressing data in

< parent child relationship

It is good for modelling of many to

many relationship.

It is good for modelling real world

entities.

4 Relationship are represented by

pointer and relationship among

records are physical in nature

Network model also represents

relationship through pointers and

nature of the relationship is

physical.

Relational model is stored data in

form of rows and column. There is no

physical connection is established

between different tables whereas

connection is logical in nature and

established through keys.

5 Searching of a particular record

is a time consuming task as to

reach a particular child we have

to process through its parent

record.

Searching of a particular record is

easy since there are multiple access

path available to reach a node in

graph.

In case of relations tables we use

concept of keys to identify the

records and search a key through

indexing is quite simple task

6. Insertion is done in the form of

parent node and child node

relationship. We cannot insert

child node in tree without

parent node.

Network model insertion can be

performed by inserting new node in

the graph with ease and has no

insertion anomaly

in Relation model , new record can be

added any time and has no insertion

anomaly

7. Updation operation may results

in inconsistency as there are

multiple child records in a tree

Updation operation is free from any

anomaly as there is only single

occurrence of each record in a graph

which may be connected with

multiple records.

Updation operation is safe in a

relational model as duplication of

record is avoidable by applying

normalisation and Primary keys

relationships

8. Hierarchical model is based on

parent child relationship and

deleting of child is easy as

compare to parent, if we delete

parent then child node will

automatically deleted from the

tree.

There is no deletion anomaly as

deleting of one node does not affect

other nodes due to many to many

relationships.

The deleting of record from a relation

is again a simple process and there is

no anomaly related to deleting of

records. Deletion of reference records

is not allowed as it may linked to

other records

3.10. OTHER TERMS USED IN E-R MODEL

CONSTRAINTS

Relationship types usually have certain constraints that limit the possible

combinations of entities that may participate in the corresponding relationship set. The

constraints should reflect the restrictions on the relationships as perceived in the 'real

world'. For example, there could be a requirement that each department in the entity

DEPT must have a person and each person in the PERSON entity must have a skill. The

main types of constraints on relationships are multiplicity, cardinality, participation and

so on.

1. Multiplicity Constraints: Multiplicity is the number (or range) of possible

occurrences of an entity type that may relate to a single occurrence of an associated entity

type through a particular relationship. It constrains the way that entities are related. It is a

representation of the policies and business rules established by the enterprise or the user.

It is important that all appropriate enterprise constraints are identified and represented

while modeling an enterprise.

2. Cardinality Constraints: A cardinality constraint specifies the number of

instances of one entity that can (or must) be associated with each instance of entity. There

are two types of cardinality constraints namely minimum and maximum cardinality

constraints. The minimum cardinality constraint of a relationship is the minimum number

of instances of an entity that may be associated with each instance of another entity. The

maximum cardinality constraint of a relationship is the maximum number of instances of

one entity that may be associated with a single occurrence of another entity.

3. Participation Constraints: The participation constraint specifies whether

the existence of an entity depends on its being related to another entity via the

relationship type. There are two types of participation constraints namely total and partial

participation constraints. Total participation constraints means that every entity in 'the

total set' of an entity must be related to another entity via a relationship. Total

participation is also called existence dependency. A partial participation constraint means

that some or the 'part of the set of an entity are related to another entity via a relationship,

but not necessarily all. The cardinality ratio and participation constraints are together

known as the structural constraints of a relationship type.

4. Exclusion and Uniqueness Constraints: E-R modeling has also

constraints such exclusion constraint and uniqueness constraint that results into poor

semantic base and tries to make entity-attribute decisions early in the conceptual

modeling process. In exclusion constraint the normal or default treatment of multiple

relationships is inclusive OR, which allows any or all of the entities to participate. In

some situations, however, multiple relationships may be affected by the exclusive

(disjoint or exclusive OR) constraint, which allows at most one entity instance among

several entity types to participate in the relationship with a single root entity.

GENERALIZATION

1. A generalization hierarchy is a form of abstraction that specify the two or more

entities that share the common attributes can be generalized into a higher-level

entity type called a super type or generic entity.

2. The lower level of entities becomes the subtype. Subtypes are dependent entities.

SPECIALIZATION

1. Specialization is a process of taking subsets of higher level entity set to form lower

level entity sets.

2. It is a process of defining a set of subclasses of an entity type which is called as

super class of the specialization.

AGGREGATION

1. One limitation of the E-R model is that it cannot express relationship among

relationships.

2. Aggregation is the process of compiling information on an object, thereby

abstracting a higher level object.

3. Aggregation allows us to indicate that a relationship set participate in another

relationship set.

Questions

1. What do you mean1 by data models? Explain the answer.

2. How can we classify data models?

3. What do mean by relationships in a data model

4. What is an attribute in data modeling?

5. Explain the Relational Model? Write advantages and disadvantages.

6. Explain the Hierarchical Model?Write advantages and disadvantages.

7. Explain different operations that can be performed on Hierarchical

8. Compare different data models.

9 Define the following terms:

(a) Entity Set

(b) Attribute

(c) Relationship Set

(d) Simple attributes

(e) Composite attributes

(f) Multivalve attributes.

10 What are the different types of attributes? Explain using examples.

11 What are mapping constraints? What are its types?

12 What are weak entity sets? Why are they used?

13 What is generalization? Explain with a suitable example.

14 What is aggregation? Explain using a suitable example.

15 The E-R Diagram for an Employee Payroll System.

16 Discuss the advantages and disadvantages of ER model.

17 The E-R Diagram for Book Purchasing System..

18 Explain with diagrammatical illustrations about the different types of relationships

COURSE: DBMS

UNIT 4 : RELATIONAL DATA MODEL

4.1 RELATIONAL MODEL

4.2 COMPARISON OF DATA MODELS

4.3 RELATIONAL ALGEBRA AND RELATIONAL CALCULUS

4.4 RELATIONAL ALGEBRA

4.5 RELATIONAL CALCULUS

4.6 DIFFERENCE BETWEEN RELATIONAL ALGEBRA AND RELATIONAL

CALCULUS

4.1 RELATIONAL MODEL

1. It is primary data model for commercial data processing.The relational model was

proposed by E.F.Codd of the IBM in 1972.

2. Relational model is a collection of tables. Tables are also known as

relations.Therefore it is known as relational model.

3. Relational model represents the database as a collection of relations. Each relation

(table)is a collection of row and columns.

4. Each table has a unique, name in database.

5. Columns are called attributes and rows are called tuples.

6. For each attribute there is a set of permitted values called domain.

7. Attribute name will be unique in a table.

8. Domain value can be NULL which shows that the value is unknown or does not

exist.

9. The order of attribute has no significance. We can arrange attributes in any order.

10. We can insert record in any order.

11. Representation of data in Relational Model: A relational database consists of any

number of relations. We can represent relation schemes by giving the name of the

relation, followed by the attribute names in parenthesis.

12. Components of Relational Model

(1) Data Structure

(2) Data Integrity

(3) Integrity Constraints

1. Data Structure

(a) Relation

• All data is represented in table.

• Table contains rows and columns. Table isalso known as Relation.

• Columns are called attributed and rows are called tuples. Each cell of

relation contains only single value.

• Relation contains information on one subject only.

Student

S. NO. Name Class City Roll Number

1. Rohit 10th
Chennai 1010

2. Akhil 12th
Mumbai 1229

3. Aditya 8th
Bangalore 801

4. Sachin 9th
Gurgaon 906

5. Rahul 11th
Patiala 1112

6. Sid 12th
Pune 1225

7. Kunal 8th
Hyderabad 806

Student is the title of the relation. There are 5 column (S.No, Name, Class, City, Roll

Number) and 7 rows.

(b) Attribute

• Columns-are called attributes.

• Attributes appear vertically in a relation.

• Attributes can appear In any order and provide specific information.

• Attributes.in a relation "Student" are S.No., Name, Class, City, Roll

Number.

Student

S. NO. Name Class City Roll Number

1. Rohit 10th
Chennai 1010

2. Akhil 12th
Mumbai 1229

3. Aditya 8th
Bangalore 801

4. Sachin 9th
Gurgaon 906

5. Rahul 11th
Patiala 1112

6. Sid 12th
Pune 1225

7. Kunal 8th
Hyderabad 806

(c) Tuple

• Rows are called tuples.

• Tuples appear horizontally in a relation.

• Tuples can appear in any order and provide complete information (full

record).

• There are 7 tuples in a relation "Student".

Student

S. NO. Name Class City Roll Number

1. Rohit 10th
Chennai 1010

2. Akhil 12th
Mumbai 1229

3. Aditya 8th
Bangalore 801

4. Sachin 9th
Gurgaon 906

5. Rahul 11th
Patiala 1112

6. Sid 12th
Pune 1225

7. Kunal 8th
Hyderabad 806

(d) Domain

• Domain is a set of all allowed or possible values for an attribute in a

relation.

• Domain specifies the type of data used in an attribute.

• For example, in a relation student, students are from different cities. In this

case, city is an attribute of relation student and Mumbai, Patiala, Gurgaon

etc. are domain values of city attribute.

(e) Degree

• Degree is the number of attributes in a relation.

• If a relation have only one attribute, then its degree is one and known as

called unary relation

• If a relation have two attributes, then its degree is two and known as called

binary relation

• If a relation have three attributes, then its degree is three and known as

called ternary and so on.

• Degree of relation "Student" is 5.

(f) Cardinality

• Cardinality is the number of tuples in a relation.

• Cardinality changes on the basis of insertions or deletions of records in a

relation.

• Cardinality of relation "Student" is 7

2. Data Integrity: Data integrity ensures the accuracy of data. For this

purpose, we should know about the keys.

"A key is a single attribute or a combination of two or more attributes of a

relation. It is used to identify one or more instance of the set."

Types of Keys: There are six types of keys which are as follows:

(a) Candidate key:

• Candidate keys are those attributes which have unique values. But Null

value is not allowed in a candidate key.

• If there is no attribute in a relation containing unique value then

combination of two attributes of that relation can make candidate key.

• There can be any number of candidate keys in a relation (table).

Student

S. NO. Name Class City Roll Number

1. Rohit 10th
Chennai 1010

2. Akhil 12th
Mumbai 1229

3. Aditya 8th
Bangalore 801

4. Sachin 9th
Gurgaon 906

5. Rahul 11th
Patiala 1112

6. Sid 12th
Mumbai 1225

7. Kunal 8th
Hyderabad 806

8. Rohit 10th
Chennai 1011

In the above relation "Student", S. No. and Roll Number both attributes have

unique value, therefore they are candidate keys.

(b) Primary Key

• The attribute which have unique value is known as primary key. But Null

value is notallowed in a primary key.

• Primary key is used for query purposes.

• There will be only one primary keys in a relation (table).

Student

S. NO. Name Class City Roll Number

1. Rohit 10th
Chennai 1010

2. Akhil 12th
Mumbai 1229

3. Aditya 8th
Bangalore 801

4. Sachin 9th
Gurgaon 906

5. Rahul 11th
Patiala 1112

6. Sid 12th
Pune 1225

7. Kunal 8th
Hyderabad 806

8. Rohit 10th
Chennai 1011

In the above relation "Student", only one attribute Roll Number have unique value,

therefore attribute Roll Number is a primary key.

(c) Alternate Key

• Alternate key also contains unique value.

• After identifying candidate keys, one key is known as primary key and

another key (which is not selected as primary key) is known as

alternate key.

Student

S. NO. Name Class City Roll Number

1. Rohit 10th
Chennai 1010

2. Akhil 12th
Mumbai 1229

3. Aditya 8th
Bangalore 801

4. Sachin 9th
Gurgaon 906

5. Rahul 11th
Patiala 1112

6. Sid 12th
Pune 1225

7. Kunal 8th
Hyderabad 806

8. Rohit 10th
Chennai 1011

In the above relation "Student", S. No. and Roll number both have unique values

and called as candidate keys. S.No. is called alternate key and Roll number is known as

primary key.

If Primary key: Roll Number

Then Alternate key: S. No.

(d) Composite Key

• Sometimes in a relation, there is no primary key. In

that situation, more than one attributes are used to identify a unique

entity.

• The combination of those attributes are known as composite key.

Name Class City Age

Rohit 10th
Chennai 16

Akhil 12th
Mumbai 18

Aditya 8th
Bangalore 14

Sachin 9th
Gurgaon 15

Rahul 11th
Patiala 17

Sid 12th
Pune 18

Kunal 8th
Hyderabad 14

Rohit 10th
Chennai 17

In the above relation "Student‖, Name and Age are used to identify an entity,

therefore both are called composite key.

(e) Artificial Key: Sometimes in a relations, there is no primary key and there

is no possibility to make primary key.In that situation, we can insert a key in a relation

which has no meaning is known as an artificial key.

Student

Name Class City Age

Rohit 10th
Chennai 16

Akhil 12th
Mumbai 18

Aditya 8th
Bangalore 14

Sachin 9th
Gurgaon 15

Rahul 11th
Patiala 17

Sid 12th
Pune 18

Kunal 8th
Hyderabad 14

Rohit 10th
Chennai 17

In the above relation "Student", there is no unique key. We can insert a new

attribute S.No. into relation as a artificial key. This attribute S. No. has no meaning.

Student

S. No. Name Class City Age

1 Rohit 10th
Chennai 16

2 Akhil 12th
Mumbai 18

3 Aditya 8th
Bangalore 14

4 Sachin 9th
Gurgaon 15

5 Rahul 11th
Patiala 17

6 Sid 12th
Pune 18

7 Kunal 8th
Hyderabad 14

8 Rohit 10th
Chennai 17

(f) Foreign Key

• Foreign key is the attribute of a relation which acts as a primary key of

another table.

• Foreign key .allows only those values which appears in primary key or may

be null.

• Foreign key is used to make a relationship between two tables and to

maintain thereferential integrity.

Class

Class Class Incharge

8th
Mrs. Nidhi

9th
Ms. Aastha

10th
Mrs. Prathiba

11th
Mrs. Manmeet

12th
Mrs. Navreet

Student

S. No. Name Class City Roll Number

1 Rohit 10th
Chennai 1010

2 Akhil 12th
Mumbai 1229

3 Aditya 8th
Bangalore 801

4 Sachin 9th
Gurgaon 906

5 Rahul 11th
Patiala 1112

6 Sid 12th
Pune 1225

7 Kunal 8th
Hyderabad 806

 1011

In the above relation, class acts as an foreign key.

3. Relational Model Constraints/Integrity Constraints

• Integrity constraints ensure that changes made to the database by authorized

users and any change do not lose the data.

• Integrity constraints also ensure the restrictions on the data and provide the

security against the accidental damage to the database.

Type of Constraints

(a) Domain Constraint:

• It ensures that each attribute have a correct value.

• The data type associated with domains includes integer, character, string,

data, and time.

• For example: A is not allowed in the attribute Roll Number because Roll

Number is an integer attribute.

S. No. Name Class City Roll Number

1 Rohit 10th
Chennai 1010

2 Akhil 12th
Mumbai 1229

3 Aditya 8th
Bangalore 801

4 Sachin 9th
Gurgaon 906

5 Rahul 11th
Patiala 1112

6 Sid 12th
Pune 1225

7 Kunal 8th
Hyderabad 806

8 Rohit 10th
Chennai 1011

(b) Tuple Uniqueness Constraint

• Relation is a set of tuples (rows).

• All tuples in a relation must be different from each other. It means there

must be unique value or attribute by which we can identify a tuple.

(c) Key Constraint

• Primary key must have unique value in the relation (table).

• If S.No. is considered as a primary key then there must be unique value in

this attribute. We cannot insert duplicate value in the primary key.

S. No. Name Class City Roll Number

1 Rohit 10th
Chennai 1010

2 Akhil 12th
Mumbai 1229

3 Aditya 8th
Bangalore 801

4 Sachin 9th
Gurgaon 906

5 Rahul 11th
Patiala 1112

5/3 Sid 12th
Pune 1225

7 Kunal 8th
Hyderabad 806

7/4 Rohit 10th
Chennai 1011

(d) Entity Integrity:Entity integrity ensures that primary key cannot have

NULL value.

S. No. Name Class City Roll Number

1 Rohit 10th
Chennai 1010

2 Akhil 12th
Mumbai 1229

3 Aditya 8th
Bangalore 801

4 Sachin 9th
Gurgaon 906

5 Rahul 11th
Patiala 1112

 Sid 12th
Pune 1225

7 Kunal 8th
Hyderabad 806

 Rohit 10th
Chennai 1011

(e) Referential Integrity: Referential integrity ensures that if a foreign key of

a table I refers to the primary key of table II, then every value of the foreign

key in table I must be null or be available in table II.

I

Class Class Incharge

8th
Mrs. Nidhi

9th
Ms. Aastha

10th
Mrs. Prathiba

11th
Mrs. Manmeet

12th
Mrs. Navreet

II

S. No. Name Class City Roll Number

1 Rohit 10th
Chennai 1010

2 Akhil 12th
Mumbai 1229

3 Aditya 8th
Bangalore 801

4 Sachin 9th
Gurgaon 906

5 Rahul 11th
Patiala 1112

6 Sid 12th
Pune 1225

7 Kunal 8th
Hyderabad 806

8 Rohit 10th
Chennai 1011

Operations of Relational Model

1. Insert Operation: Relational model does not suffer from any insert anomaly.

2. Update Operation: Relational model does not suffer from any update anomaly.

3. Delete Operation:Relational model does not suffer from any delete anomaly.

4. Retrieve Operation: Retrieve operation for relational data model is simple and

symmetric.

Advantages of Relational Data Model

1. Simplicity: A relational data model is even simpler than hierarchical and network

models. It frees the designers from the actual physical data storage details, thereby

allowing them to concentrate on the logical view of the database.

2. Structural Independence: Unlike hierarchical and network models, the relational

data model does not depend on the navigational data access system. Changes in

the database structure do not affect the data access. Ease of design,

implementation, maintenance and uses: The relational model provides

bothstructural independence and data independence. Therefore, itmakes the

database design, implementation, maintenance and usage much easier.

3. Flexible and Powerful Query Capability: Its structured query

capability makesad hoc queries a reality.The relational database model provides

very powerful, flexible, and easy-to-use query facilities. Information in a table can

be easily modified.

4. Easy to Use: To collect the information in table consisting columns and rows is

very easy.

5. Security: In relational model, security control and authorization can be

implemented.

Disadvantages of Relational Data Model

1. Hardware overheads: The relational data models need more powerful computing

hardware and data storage devices to perform complex tasks. Consequently, they

tend to be slower than the other database systems. However, with rapid

advancement in computing technology and development of much more efficient

operating systems, the disadvantage of being slow is getting faded.

2. Easy-to-design capability leading to bad design: Easy-to-use feature of

relational database results into untrained people generating queries and reports

without much understanding and giving much thought to the need of proper

database design. With the growth of database, the poor design results into slower

system, degraded performance and data corruption.

4.2 COMPARISON OF DATA MODELS

Sr.

No.

Hierarchical Model Network Data Model Relational Data Model

1. Hierarchical data model

represents data in a tree format

where Parent and Child

relationship is represented to

show association.

Network model represents data in

graphs where data is a record which

is linked by pointers.

Relational data model logically

represents data in Tabular form where

data is placed in row and column.

2. Many to many relationship

cannot be expressed in

hierarchical model

Many to many relationship can be

expressed in hierarchical model.

Many to many relationship can be

expressed in hierarchical model.

3. It is good for expressing data in

< parent child relationship

It is good for modeling of many to

many relationships.

It is good for modeling real world

entities.

4 Relationship are represented by

pointer and relationship among

records are physical in nature

Network model also represents

relationship through pointers and

nature of the relationship is

physical.

Relational model is stored data in

form of rows and column. There is no

physical connection is established

between different tables whereas

connection is logical in nature and

established through keys.

5 Searching of a particular record

is a time consuming task as to

reach a particular child we have

to process through its parent

record.

Searching of a particular record is

easy since there are multiple access

path available to reach a node in

graph.

In case of relations tables we use

concept of keys to identify the

records and search a key through

indexing is quite simple task

6. Insertion is done in the form of

parent node and child node

relationship. We cannot insert

child node in tree without

parent node.

Network model insertion can be

performed by inserting new node in

the graph with ease and has no

insertion anomaly

in Relation model , new record can be

added any time and has no insertion

anomaly

7. Updation operation may results

in inconsistency as there are

multiple child records in a tree

Updation operation is free from any

anomaly as there is only single

occurrence of each record in a graph

which may be connected with

multiple records.

Updation operation is safe in a

relational model as duplication of

record is avoidable by applying

normalisation and Primary keys

relationships

8. Hierarchical model is based on

parent child relationship and

deleting of child is easy as

compare to parent, if we delete

parent then child node will

automatically deleted from the

tree.

There is no deletion anomaly as

deleting of one node does not affect

other nodes due to many to many

relationships.

The deleting of record from a relation

is again a simple process and there is

no anomaly related to deleting of

records. Deletion of reference records

is not allowed as it may linked to

other records

4.3 RELATIONAL ALGEBRA AND RELATIONAL CALCULUS

The relational model uses the concept of a mathematical relation in the form of

table of values which acts as building block. The table is a logical representation of data

in the form of rows and columns. The relational algebra is a formal query language

applied on relational model. It is a procedural language which specifies the operations to

be performed on relations. The operations are performed in form of sequence of algebra

operations which results in a new relation/table. The relational algebra operations can be

classified into two types.

Figure 3.1: Classification of Relational Algebra Operations

Relational calculus is a non-procedural query language. Here, no procedures are

provided to generate result based on 'query'. In relational calculus, query is expressed as

variables and formulas on these variables. There are two types of relational calculus:

tuple Relational Calculus and Domain Relational Calculus:

Figure 3.2: Classification of Relational Calculus

4.4 RELATIONAL ALGEBRA

1. Relational algebra is a procedural query language.

2. It consists of set of operators that take one or two relations as input and produce a

new relation as output.

3. It uses relational operators.

4. It is of mainly two types which are as follows:

Figure 3.3: Classification of Relational Algebra

I. Traditional Set Operators

(a)Union Operator

(b)Intersection Operator

(c)Difference Operator

(d)Cartesian Product Operator

(a) Union Operator:

• Union of two relations is the set of all elements belonging to both relations.

• Result must not contain duplicate elements.

• It is denoted by U.

Name Roll Number

Akhil 211

Monika 129

Name Roll Number

Aastha 112

Akhil 211

Name Roll Number

Akhil 211

Monika 129

Name Roll Number

Aastha 112

Akhil 211

• For example: We want to list all the names and roll numbers which are present in

both tables:'A' and 'B'.

AB

Formula:Name, Roll Number (A) U Name, Roll Number (B).

AUB

Name Roll Number

Akhil 211

Monika 129

Aastha 112

(b) Intersection Operator:

• Intersection of two relations produces a relation which contains all elements that

are common to both relations.

• It is denoted by .

• For example: We want to list only those names and roll numbers which are

common inboth tables 'A' and 'B'.

A B

Formula:Name, Roll Number (A) Name, Roll Number (B)

AB

Name Roll Number

Akhil 211

Name Roll Number

Akhil 211

Monika 129

Name Roll Number

Aastha 112

Akhil 211

Name Roll Number

Monika 129

Name Roll Number

Aastha 112

Name Emp_No Dept_Id

Akhil 101 11

Monika 102 12

Aastha 101 11

Dept_Name Dept_Id

Production 11

Accounts 12

(c) Difference Operator

• Difference operator is used to find those tuples which are present in one relation

but not in another relation.

• It is denoted by (-) sign.

• For example: We want to list those names and roll numbers which are present in

table 'A9 only, not in table'B'.

AB

Formula:Name, Roll Number (A) –Name, Roll Number (B)

A-BB-A

(d) Cartesian Product

• Cartesian product operator is used to combine information from any two relations.

• It is denoted by (X) symbol.

• For example: We want to list the names of employees with all departments of

tables 'A'and'B'.

AB

Formula: Name (A) X Dept_Name (B)

AXB

Name Dept_Name

Akhil Production

Akhil Accounts

Monika Accounts

Monika Production

Aastha Production

Aastha Accounts

II. Special Operators

(a) Selection Operator

(b) Projection Operator

(c) Join Operator

(d) Division Operator

(a) Selection Operator

• Selection operator selects tuples (rows) that satisfy a given condition.

• It is denoted by lower Greek letter sigma (a).

• We can also use folio wing symbols: = >,<>>=,<= #

• For example: We want to list the tuples (employees) who live in city 'chd'.

Formula: city = "chd" (employee)

(b) Projection Operator

• Projection operator returns a new relation as output with certain attributes.

• It is denoted by Greek letter pie ().

• For example: We want to list all the emp_no and name of employee.

Formula: emp_no, name (employee)

(c) Join Operator

• Join operator is also known as natural join operator.

• It is denoted by the symbol ([><]).

Akhil

Name

• Cartesian product operator is used to combine two tables, but the output of

Cartesianproduct is not correct

• Join operator is used to combine the two tables instead of Cartesian product

operator.

• For example: We want to combine the two tables 'A'and 'B'.

(d) Division Operator

• Division operator will work on two relations (tables).

• It make another relation consisting of values of an attribute of one relation that

match all the values in the another relation.

• It is denoted by the () symbol.

Formula: Name (A B)

(A B)

4.5 RELATIONAL CALCULUS

1. It was first proposed by E.F.Codd.

2. It is a formal language used to symbolize logical arguments in mathematics.

3. In relational calculus, query is expressed as formula containing number of

variables and expression.

4. User will only tell the requirement without knowing the methods of retrieval.

5. User is not concerned with the procedure to obtain the results.

6. It is the responsibility of DBMS to transform these queries and give the result to

the user.

7. Relational calculus is of mainly two types which are as follows:

Figure 3.4: Classification of Relation Calculus

I. Tuple Oriented Relational Calculus

• It is based on specifying a number of tuples variables.

• The query of tuple relational calculus is

{t/COND(t)}

t-> is tuple variable

COND (t)->is conditional expression.

• The result of such query is a relation that contains all the types (rows) that

satisfy condition COND (t).

Query of relational calculus is:

{t. title, t. author/Book(t) and t. PRICE > 100}

It will give us title, author of all the books whose price is greater than 100.

Expression of tuple relational calculus is:

{t1. A1, t2.A2, t3.t3,…tn.An/COND (t1, t2, t3, …tn)}

t1, t2 …. are tuple variables.

A1, A2 … are the attributes of relations.

COND is condition.

II. Domain oriented relational calculus

• Domain calculus is different from tuple calculus in the type of variables used

in formula.

• In domain oriented relational calculus, variable range will be single value

rather than multiple values.

• Expression of domain oriented relational calculus is:

{X1, X2, …Xn | COND (X1, X2, … Xn)}

X1, X2, …Xn are domain variables.

COND is condition or formula of domain relation calculus.

i.e. Get employee no. of for job clerk

EX where EMP (emp no: EX, job = 'clerk')

Get employee name that belongs to dept no. 10 and having salary > 2000.

Ex where EMP (ename: EX, deptno = 10, sal> 2000)

4.6 DIFFERENCE BETWEEN RELATIONAL ALGEBRA AND

RELATIONAL CALCULUS

Sr.
No.

Relational Algebra Relational Calculus

1 It is a procedural method of solving

the queries.

It is a non-procedural method of solving the

queries.

2 It is used as a vehicle for

implementation of relational calculus.

The queries of relational calculus are

transformed into equivalent relational

algebra format and then implemented with

the help of relational algebra operators.

3 The solution to the database access

problem using a relational algebra is

obtained by stating what is required?

And what are the steps to obtain that /

information?

The solution to the database access problem

using a relational calculus is obtained by

stating what is required? And system will

find the answer?

Questions

1. What do you mean1 by data models? Explain the answer.

2. How can we classify data models?

3. What do mean by relationships in a data model

4. What is an attribute in data modelling?

5. Explain the Relational Model? Write advantages and disadvantages.

6. Explain the Hierarchical Model?Write advantages and disadvantages.

7. Explain different operations that can be performed on Hierarchical

8. Compare different data models.

9. List the various relational operators available in a relational model.

10. What is the difference between select and project operators?

11. Explain the various set operators available in relational algebra.

12. What is the Cartesian product operation? Why is it rarely used without a select

operation?

13. What is the significance of the join operator? Explain the different types of join.

14. Explain relational calculus in detail.

UNIT 5: NORMALIZATION

5.1 NORMALIZATION

COURSE: DBMS

5.2 FUNCTIONAL DEPENDENCY

5.3 FULLY FUNCTIONAL DEPENDENCY

5.4 PARTIAL FUNCTIONAL DEPENDENCY

5.5 TRANSITIVE FUNCTIONAL DEPENDENCY

5.6 MULTI VALUED DEPENDENCY

5.7 FIRST NORMAL FORM (1NF)

5.8 SECOND NORMAL FORM (2NF)

5.9 THIRD NORMAL FORM (3NF)

5.10 BOYCE CODD NORMAL FORM (BCNF)

5.11 FOURTH NORMAL FORM (4NF)

5.12 FIFTH NORNAL FORM (5NF)

5.1 NORMALIZATION

"Normalization is the process of efficiently organizing data to minimize

redundancy in a database and makes database more flexible."

1. E.F. Codd introduced the concept of normalization.

2. Normalization technique is used in designing relational model.

3. It improves database design and removes anomalies for database activities.

4. Its objective is to reduce the redundancy (duplicity) and eliminates the insertion,

updation, and deletion anomalies from the database.

5. To achieve its objective, it breaks the database into smaller tables and establishes

the relationships between those tables.

6. It makes data consistent throughout the database.

7. Normalization follows some rules. Each rule is known as normal form.

8. E.F. Codd introduced the first normal form (INF) in 1970.

9. He introduced the second normal form (2NF), third normal form (3NF) in 1971

and boyce codd normal form (BCNF) in 1974.

10. For many applications, third normal form (3NF) is necessary.

11. Fourth normal form (4NF) was introduced by Ronald Fagin in 1977.

12. Normal forms are numbered from lowest (INF) to highest (5NF).

13. The following are the disadvantages of normalizations:

• It is a difficult and time consuming process.

• Sometimes, the performance of database degrades from lowest (INF) to highest

(5NF).

14. Un-normalized Form (UNF) is one in which a table contains non atomic values at

each row. Non atomic values need further decomposition for simplification. For

the simplification, un-normalized form goes into first normal form.

15. The levels/steps of normalization are as follows:

Un-normalized Form (UNF)

First Normal Form (INF)

Second Normal Form (2NF)

Third Normal Form (3NF)

Boyce Cod'd Normal Form (BCNF)

Fourth Normal Form (4NF)

Fifth Normal Form (5NF)

Fig. 5.1: Steps of Normalization

5.2 FUNCTIONAL DEPENDENCY

1. Functional dependency is an association between two attributes (columns) of the

same relation (table).

2. It is basically a constraint between two sets attributes from the same relation in a

database.

3. One attribute is called determinant and other is called determined.

4. For each value of determinant, there is only one value of determined.

5. For example: A→B

• "B is functionally dependent on A" because for each value of attribute 'A',

there is exactly one value of attribute 'B'.

• If A is determinant and B is determined then we can say that

"A functionally determines B" OR "B is functionally dependent on A".

Supplier

Sr. No, Name Status City

S1 Akhil 10 Delhi

S2 Monika 2.0 Patiala

S3 Aastha 30 Delhi

In above table "Supplier", attribute 'Name' is functionally dependent (FD) on

attribute 'Sr. No.' because 'Name' has only one value for given 'Sr. No.'.

We can say Sr. No. → Name

'Sr. No' is determinant and 'Name' is determined.

But attribute 'City' is not functionally dependent (FD) on attribute ' Sr. No.'

because 'City' has more than one value for given 'Sr. No.'.

5.3 FULLY FUNCTIONAL DEPENDENCY

1. Fully functional dependency is a functional dependency in which all the non-key

attributes are dependent on the key attributes.

2. For example: A → B

• "B is fully functionally dependent on A" because 'B' is functionally

dependent on 'A' but not on any proper subset of 'A'.

• "B is fully functionally dependent on A" means we cannot identify the

value of 'B' only from 'A', we can identify the value of 'B' from 'A' and

another attribute from the same relation. Another attribute will help the 'A'

to find the value of 'B'.

• If we delete any attribute from the relation, then it will violate the concept

of functional dependency.

3. In the below table, Qty. is F.F.D. on 'Sr. No.' and 'Pr. No.' because we can get the

value of Qty. only by the combination of both 'Sf. No.' and 'Pr. No.'.

Sr. No. Pr. No. Qty.

S1 P1 270

S1 P2 300

S1 P3 700

S2 P1 270

S2 P2 700

S3 P2 300

5.4 PARTIAL FUNCTIONAL DEPENDENCY

1. Partial functional dependency occurs, when some non-key attribute depends on

primary key attribute.

2. For example: A → B

The attribute 'B' is partial functional dependent on attribute 'A', if there is some

attribute that can be removed from 'A' and yet the dependency holds.

5.5 TRANSITIVE FUNCTIONAL DEPENDENCY

1. Transitive functional dependency occurs, when some non-key attribute depends

upon other non-key attributes.

2. For example: There are three attributes 'AVB' and 'C'.

• A→B

• B→C

• A→C

It means 'C' is transitively dependent on 'A'.

5.6 MULTI VALUED DEPENDENCY

1. Multivalued dependency is a full constraint between two sets of attributes in a

relation.

2. It plays a role in fourth normal form (4NF) of normalization.

3. For example: If there are three attributes 'A', 'B' and 'C' in a relation.

• 'B' and 'C' are independent from each other.

• 'B' and 'C' are multi valued fact about A.

Then A → →B

A→ → C

• Then we can say that "A multi determines B" OR "B is multi dependent on

A".

Course_Student_Book

Course Student Book

Chemistry Akhil B1

Chemistry Akhil C1

Physics Moaika A1

Physics Monika D1

Chemistry Aastha Bl

Chemistry Aastha Cl

English Rohit A1

English Rohit D1

Course → → Student

Course → → Book

5.7 FIRST NORMAL FORM (1NF)

1. E.F. Cold introduced the first normal form (1NF) in 1970.

2. First normal form (1NF) eliminates the repeating columns from an un-normalized

table.

3. In 1NF, there is no repeating column (group).

4. We convert un-normalized table into normalized for.

5. Primary key is required in each table to identify a record.

6. The purpose of primary key is to uniquely identify a record.

7. First normal from depends on the functional dependency.

8. Formula : f(x)=y

For every value of x, there is only one value for y.

9. For example: The following table "Student" having columns (Name, Course, Roll

Number) is an un-normalized table. We have to convert this un-normalized table

into normalized table.

Student

Name Course Roll Number

Akhil Science 211, 128

Monika Computer 129

Aastha Management 112

The above table "Student" is un-normalized because it contains more than one

value for the column 'Roll Number'. 'Akhil' has two values (211, 128) for the column 'roll

number' which is not possible. For normalization, there should be only one value in one

column.

The following are two methods to convert un-normalized table into normalized

table:

• Method 1: To convert the un-normalized table "Student" into normalized form,

we decompose (divide) this un-normalized table into two tables.

Student 1

Name Course

Akhil Science

Monika Computer

A'astha Management

Student 2

Name Roll Number

Akhil 211

Akhil 128

Monika 129

Aastha 112

• Method 2: To convert the un-normalized table "Student" into normalized form,

we convert this this un-normalized table into flat table.

Student

111 Rohit

Name Course Roll Number

Akhil Science 211

Akhil Science 128

Monika Computer 129

Aastha Management 112

Anomalies in First Normal Form (INF)

1. Insert Anomaly: We cannot insert any information of new student in table

"Student" until he join any course. Similarly, we cannot insert any information

about the course until there is any student. This phenomenon is known as insert

anomaly.

Student

Name Roll Number Course

Akhil 211 Science

Monika 129 Computer

Aastha 112 Management

The details of new student 'Rohit' cannot insert into the table "Student" until he

join any course. It is called insert anomaly.

2. Update Anomaly :In the update anomaly, if we want to change (update) the

course of any student, then we have to change (update) the multiple records. If we

change the course of the student but forget to change the details of that student

from all the locations where it occures, then data become inconsistent/This

phenomenon is known as update anomaly.

3. Delete Anomaly: If we delete any course from table "Student", then all the related

information to that course automatically deletes.

For Example: if we delete the course 'management' from the table "Student", then

it automatically ceases the name 'Aastha' and roll number '112'.

Student

Name Roll Number Course

Akhil 211 Science

Monika 129 Computer

Aastha 112 Management

After deletion, table "Student will be look like:

Student

Name Roll Number Course

Akhil 211 Science

Monika 129 Computer

5.8 SECOND NORMAL FORM (2NF)

1. E.F. Codd introduced the second normal form (2NF) in 1971.

2. A relation is in 2NF if it fulfills the following conditions

• Relation should be in INF and

• Every non-key attribute (non-prime attribute) is fully functionally

dependent on Primary key.

3. For example-.The following table "Products" having columns (Item, Price,

Quantity, Order Number, and Order Date) is in INF.

Products

Item Price Quantity Order Number Order Date

Mobile 2000 20 11 1-7-2015

Sunglasses 1000 15 12 2-7-2015

Item Price

Mobile 2000

Sunglasses 1000

Watch 800

Wallet 600

Order Number Order Date

11 1-7-2015

12 2-7-2015

13 3-7-2015

14 4-7-2015

Watch 800 18 13 3-7-2015

Wallet 600 12 14 4-7-2015

• The table "Products" has two primary key columns (Item and Order

Number).

• Price (non-primary key column) is fully functionally dependent on Item

(prime key column).

• Order Date (non-primary key column) is fully functionally dependent on

Order Number (prime key column).

• The table "Products" can be converted into second normal form (2NF) by

decomposing it into sub tables such as:

Item Quantity Number

Mobile 20 11

Sunglasses 15 12

Watch 18 13

Wallet 12 14

Anomalies in Second Normal Form (2NF):

1. Insert Anomaly: Second form (2NF) also Suffers from the inset anomaly same

like the first normal form (1NF). We cannot insert any information of 'Price' in

table "Products" until is associates with any 'item'. Similarly, we cannot insert any

information about the 'item' in the table "Products" until its price is fixed. This

phenomenon is known as insert anomaly.

Products

Item Price Quantity Order Number Order Date

Mobile 2000 20 11 1-7-2015

Sunglasses 1000 15 12 2-7-2015

Watch 800 18 13 3-7-2015

Wallet 600 12 14 4-7-2015

 1200 16 15 5-5-2015

The details of new price '1200' cannot insert into the table "Products" until it

associates with any 'item'. We cannot left blank the value of any column. It is

called insert anomaly.

2. Update Anomaly: In the update anomaly, if we want to change (update) the

'price' of any 'item', them we has to change (update) the multiple records. It we

change the 'price' of any 'item' but forget to change the details of that 'item' from

all the locations where is occurs, then data become inconsistent. This phenomenon

is known as update anomaly.

3. Delete Anomaly: Like 1NF, 2NF also suffers with delete anomaly. If we delete

any 'item' from table "Products", then all the related information to that 'item'

automatically deletes. For example : if we delete the item 'watch' from the table

"products", then it automatically deletes it's all related information (price, quantity,

order number, order date).

Products

Item Price Quantity Order Number Order Date

Mobile 2000 20 11 1-7-2015

Sunglasses 1000 15 12 2-7-2015

Watch 800 18 13 3-7-2015

Wallet 600 12 14 4-7-2015

After deletion, table "products" will be look:

Product

Item Price Quantity Order Number Order Date

Mobile 2000 20 11 1-7-2015

Sunglasses 1000 15 12 2-7-2015

Wallet 600 12 14 4-7-2015

5.9 THIRD NORMAL FORM (3NF)

1. E.F. Codd introduced the third normal form (3NF) in 1971.

2. It means a relation (table) is in 3NF if it is in 2NF and there is no transitive

dependency.

3. The objective to 3NF is to remove all transitive dependencies.

4. A relation is in 3NF if it fulfills the following conditions:

• Relation should be in 2NF and

• Every non-key attribute (non-prime attribute) is transitively dependent on

Primary key only.

5. It removes the anomalies of 2NF.

6. For many applications, third-normal form (3NF) is necessary.

7. For example: The following table "Record" having columns (Name, Roll Number,

System, Number, Hours_Rate) is in 2NF.

Record

Name Roll Number System Number Hours Rate

Aastha 112 S1 20

Hours Rate System Number

Akhil 211 S2 18

Monika 129 S3 17

Rohit 219 S2 15

Aditya 285 S3 16

Kunal 712 S4 12

Sachin 125 S1 23

Rahul 231 S4 25

Siddharth 123 S5 13

• 'Name' is a primary key and the entire non-key attributes (Roll Number,

System Number, Homrs_Rate) are dependent on it.

• To convert the table "Record" into 3NF, we decompose it into two tables

(Student 'Record, Charge Record).

Student Record

Name Roll Number System Number

Aastha 112 SI

Akhil 211 S2

Monika 129 S3

Rohit 219 S2

Aditya 285 S3

Kunal 712 S4

Sachin 125 S1

Rahul 231 S4

Siddharth 123 S5

Charge Record

SI 43

S2 33

S3 35

S4 37

S5 13

• Table "Student Record" provides the detail of student like Name, Roll

Number and System Number used by him/her.

• Table "Charge Record" provides the details of system like System Number,

Charges for using System.

Anomalies in Third Normal Form (3NF)

1. Insert Anomaly: Third normal form (3NF) is also suffers from insert anomaly but

upto some extent. It is possible to insert in advance, the rate to be charged from

student for a system.

2. Update Anomaly: If Hours_Rate for a system in table "System Record" changed

(updated), then we need only to change a single record in table "Charge Record".

3. Delete Anomaly: It we delete the record of a student who is only student working

on a particular system, then we will not lose the information of the system and

hours_rate of that system.

5.10 BOYCE CODD NORMAL FORM (BCNF)

1. E.F. Codd introduced the Boyce Codd Normal Form (BCNF) in 1 974.

2. A relation is in BCNF, if it is in 3NF and every determinant (attribute) is a

candidate key.

3. It means BCNF have multiple candidate keys (more than one primary key).

5.11 FOURTH NORMAL FORM (4NF)

1. Fourth normal form (4NF) was introduced by Ronald Fagin in 1977.

Course Student

Chemistry Akhil

Physics Monika

Chemistry Aastha

Course Student

Chemistry Organic Chemistry

Chemistry Physical Chemistry

Physics Optics

2. 2NF, 3NF and BCNF are concerned with functional dependencies whereas 4NF

concerned with multivalued dependencies.

3. A relation is in 4NF if it is in 3NF or BCNF and contains no multi valued

dependencies.

4. For example: The following table "Course_Student_Book" is in 3NF.

Course Student Book

Course Student Book

Chemistry Akhil Organic Chemistry

Chemistry Akhil Physical Chemistry

Physics Monika Optics

Physics Monika Mechanics

Chemistry Aastha Organic Chemistry

Chemistry Aastha Physical Chemistry

English Rohit English Literature

English Rohit English Grammar

• Attributes 'Student' and 'Book' are multivalued facts about the attribute 'Course'.

There are many students for one course and many books for one course.

• The condition of 4NF is that there should be no multi valued attribute in a table.

• To convert the table "Course_Student_Book" into 4NF, we decompose it into two

tables (Course Student, Course Book).

• Table "Course-Student" tells us which student is studying which course.

• Table "Course_Book" tells us which book is available for which course.

Course Student Course Book

Course Student

Chemistiy Akliil

Physics Monika

Chemistry Aastha

English Rohit

Course Book

Chemistry Organic Chemistry

Chemistry Physical Chemistry

Physics Optics

Physics Mechanics

English English Literature

English English Grammar

Note: If anew student 'Rahul' wants to join a course 'English' and use books of 'English'

and 'Chemistry', then we have to insert new information of student 'Rahul'. We will insert

the name 'Rahul' twice. First entry for 'English' and second entry for 'Chemistry'.

5.12 FIFTH NORNAL FORM (5NF)

1. A relation is in 5NF if it is in 4NF and based on join dependency.

2. Join dependency means when a table is decompose/divide into three or more

tables, and then the resulting tables (divided tables) can be rejoined to form the

original table.

3. The following are three sub tables (Course_Student, Course_Book and

Student_Book) of original table "Course_Student_Book". The table

"Course_Student_Book" is used in the fourth normal form (4NF).

Course_Student

Student_Book

English Rohit

Physics Mechanics

English English Literature

English English Grammar

Student Book

Akhil Organic Chemistry

Akhil Physical Chemistry

Monika Optics

Monika Mechanics

Aastha Organic Chemistry

Aastha Physical Chemistry '

Rohit English Literature

Rohit English Grammar

4. When we will join these three tables (Course_Student? Course_Book and

Student_Book), then we will get the original table "Course_Student_Book".

Questions

1. What is Normalization? State and explain its types.

2. What is the need of Normalization of data? What are the various techniques for

normalization in relational database model?

3. What is Functional dependency? Explain in detail Give an example also.

4. What do you mean by redundancy? Explain the ways to remove it from the

database?

5. What do you mean by Normal forms? Explain the various types of it along with

the suitable example.

6. What is the difference between First and second Normal Forms?

7. What is INF? Give example to demonstrate how INF improves a table.

8. Discuss 2NF. Discuss the problems that can be encountered in a table, which is in

INF, How 2NF solve them?

9. Define 3NF? Discuss its need.

10. Explain Boyce Codd Normal Form.

11. Explain multivalued dependency. Give an example.

12. Explain Join dependency. Give an example.

13. Explain 4NF along with example.

14. What do you mean by FDs? Explain the Closure of a Set of FDs.

15. Explain 5NF along with example.

16. What is fully functional dependency? Give an example.

COURSE: DBMS

UNIT 6: TRANSACTION MANAGEMENT AND CONCURRENCY CONTROL

6.1 Transaction

6.1.1 States Of Transaction

6.1.2 Acid Properties of Transaction

6.1.3 Scheduling of Transaction

6.1.3.1 Types of Schedules

6.1.4 Serializability

6.2 Concurrency Control

6.2.1 Need of Concurrency Control

6.3.1 Locks

6.3.1.1 Types of Locks

6.3.1.2 Compatibility of Locks

6.3.2 Concurrency Control Algorithms

6.3.2.1 Pessimistic Approach

6.3.2.2 Optimistic Approach

6.4 Deadlock

6.4.1 Reasons for the Occurence of Deadlock

6.4.2 Deadlock Prevention

6.4.3 Deadlock Detection

6.5 Database Security And Integrity

6.6 Database Security.

6.6.1 Issues in Security

6.6.2 Need/Requirement of Security

6.6.3 Levels of Security

6.6.4 Different Methods of Database Security

6.6.4.1 View

6.6.4.2 Privilege

6.6.4.3 Roles

6.6.4.4 Encryption

6.6.4.5 Role of DBA in Security

6.7 Basic Concepts Of Security

6.8 Database Integrity

6.9 Recovery

6.9.1 Cause/Reason of Failure

6.9.2 Terms Used in Recovery Process

6.10 Atomicity Of Transaction

6.10.1 Log Based Recovery

6.10.1.1 Deffered Database Modification

6.10.1.2 Immediate Database Modification

6.10.2 Shadow Paging

6.11 Disaster Management

6.1 TRANSACTION

1. One or more operations collectivelya single unit of database work is known as

database transaction.

2. A transaction is a group of actions such as select, insert, update and delete

performed on the database to change the state of a database.

3. A transaction is an action orof actions carried out by the user or the application.

4. It is an atomic operation by the use in reality and goes through number of states

during its-lifetime.

5. Once a transaction starts, it ends with success or failure.

6. A successful transaction commits andreaches a new consistent state.

7. A failed transaction and 'rolled back' or 'undone'. In the failed transaction;

database restores the previous consistent state.

8. A database transaction must be ACID ([Atomicity-Consistency, Isolation, and

Durability]. We will discuss ACID of transaction in section 7.1.2.

9. Transactions are supported by SQL [Structured Query Language]. We will discuss

SQL in chapter 10.

10. A transaction is required to manage of oversees the sequence of events

(transactions).

6.1.1 States of Transaction

The database transaction can be in one of the following four states:

1. Active State

• A transaction is in active state while its statements start to be executed.

• Once astate, it starts executing its statements and ends with the commit state.

• Sometimes, with partially committed state. At this phase, the database has

its but it is still, possible for the transaction to be aborted because the output

is residing temporarily in main memory due to hardware failure.

2. Failed State

• After the active state, sometimes transaction enters in the failed state

because its execution can no longer proceed (due to program error or

hardware error).

Fig. 6.1: States of Transaction

3. Aborted State

• Aborted state comes, when transaction end with failure.

• A failed transaction enters in the aborted state and 'rolled back' or 'undone'.

• An aborted transaction has no effect on database and can retain its

consistent state.

• In the failed transaction, database restores the previous consistent state.

4. Committed State

• Committed state comes, when transaction end with success.

• A successful transaction commits and database reaches in a new consistent

state.

• A successful transaction cannot 'rolled back' or 'undone'

6.1.2 Acid Properties of Transaction

To ensure the integrity of data we require that the database system maintains the

properties of transactions abbreviated as ACID. The ACID properties of transaction are

as follows:

Fig. 6.2: Acid Properties Atomicity

1. Atomicity

• Atomicity means either 100% modification on 0% modification.

• According to atomicity, we cannot perform half operations of any

transaction.

• It means we should perform all the operations of the transaction or we

should not perform any operation.

• It ensures that either a transaction ends with committed state or rolled back

state.

• Committed state comes, when transaction end with success and database

reaches in a new consistent state.

• Aborted state comes, when transaction end with failure and database

restores the previous consistent state. A failed transaction enters in the

aborted state and 'rolled back' or 'undone'.

• Ensuring atomicity is the responsibility of the database system itself. It is

handled by a component called the transaction management component.

2. Consistency

• According to the -consistency property of the transaction, database remains

in a valid state (consistent state) before and after the transaction is

committed.

• It means transaction cannot violate the rules (integrity constraints) of the

database.

• Ensuring consistency for an individual transaction is the responsibility of

the application manager who codes the transaction.

3. Isolation

• It means that the execution of one transaction in not affected the other

concurrent transactions.

• According to isolation property, data used during the execution of one

transaction is not used by another transaction until the execution is not

completed.

• It means that the actions performed by a transaction will be isolated or

hidden from outside the transaction until the transaction terminates.

• Ensuring the isolation property is the responsibility of a component of a

database system called the concurrency control component.

4. Durability

• According to the durability, once a transaction completes successfully, all

the updates that it carried out on the database persists even if there is a

system failure after the transaction completes execution.

• After the transaction has been successfully completed, all the modifications

of a transaction will permanent (cannot 'roll back' or 'undone') even if the

system failure occurs.

6.1.3 Scheduling of Transaction

• A schedule is a list of actions (Reading, Writing, Aborting or Committing)

from a set of transactions.

• A schedule is a sequence of the operations by a set of concurrent

transactions that preserves the order of the operations in each of the

individual transactions.

• For example: 4M' is a schedule. Schedule 'M' is a set of three transactions

Tl, T2 and T3. Transaction Tl reads and writes to object A.

Transaction T2 reads and writes to object B.

Transaction T3 reads and writes to object C.

Schedule 'M'

Tl T2 T3

Read (A)

Write (A)

Commit

 Read (B)

 Write (B)

 Commit

 Read (C)

 Write (C)

 Commit

Example of Scheduling of Three Transactions

6.1.3.1 Types of Schedules

There are two types of schedules:

Fig. 6.3: Types of Schedules

1. Serial Schedule

• In a serial schedule, the transactions are performed in serial order. T there is

no interference between transactions and only one transaction is executing

at a given time.

• In a serial schedule, all the steps (operations) of each transaction executed

consecutively without overlapping.

• For example: Schedule 'M' is a set of three transactions Tl, T2 and T3.

Schedule 'M' is a serial schedule because the actions of the 3 transactions

(Tl, T2 and T3) are not interleaved and executed consecutively.

Transaction Tl reads and writes to object A.

Transaction T2 reads and writes to object B.

Transaction T3 reads and writes to object C.

Schedule 'M'

Tl T2 T3

Read (A)

Write (A)

Commit

 Read (B)

 Write (B)

 Commit

 Read(C)

 Write (C)

 Commit

Example of Serial Schedule

2. Non-Serial Schedule

• A schedule where the operations from a set of concurrent transactions are

interleaved.

• In a non-serial schedule, if the operations of the transactions are not

properly interleaved, then they result in problems such as lost update, dirty

read and inconsistency analysis.

• For example: Schedule 'N' is a set of three transactions T1, T2 and T3.

Schedule 'N' is a non-serial schedule because the actions of the 3

transactions (T 1, T2 and T3) are interleaved.

Transaction Tl reads and writes to object A.

Transaction T2 reads and writes to object B.

Transaction T3 reads and writes to object C.

Schedule 'N'

Tl T2 T3

Read (A)

 Read (B)

 Read (C)

Write (A)

 Write (B)

 Write (C)

Commit Commit Commit

Example of Non-Serial Schedule

6.1.4 Serializability

• The objective of serializability is to find out the non-serial schedules and

allow the all transactions to execute concurrently without creating any

problem.

• In a non-serial schedule, if the operations of the transactions are not

properly interleaved, then they result in problems such as lost update, dirty

read and inconsistency analysis.

Schedule 'N'

Tl T2 T3

Read (A)

 Read (B)

 Read (C)

Write (A)

 Write (B)

 Write (C)

Commit Commit Commit

Example of Non-Serial Schedule

• Serializability is used to find out or prevent the inconsistency (problems)

occurs during the non-serial schedule.

6.2 CONCURRENCY CONTROL

1. "Concurrency control is the activity of coordinating concurrent accesses to a

database in a multi-user database management system.lt is used to coordinate

simultaneous transactions while preserving data integrity".

2. When many transactions execute concurrently, then the concurrency control

scheme is used to make isolation.

3. The concurrency control is required when there are multiple accesses to same data

by multiple users.

4. Concurrency control in DBMS ensures that transactions are performed

concurrently without the concurrency violating the data integrity of a databse.

5. Executed transaction should follow the ACID rules [Atomicity, Consistency,

Isolation, and Durability]. We discussed ACID rules in the section 7.1.2.

6. The DBMS must guarantee that only realizable.

7. It also guarantees that no effect of committed transactions is lost, and no effect of

aborted (rolled back) transactions remains in the related database.

8. For example: Two travelers who go to electronic ticket booking center at the same

time to purchase a train ticket to the same destination on the same train. There's

only one seat left in the coach, but without concurrency control, it's possible that

both travelers will end up purchasing a ticket for that one seat, However, with

concurrency control, the database wouldn't allow this to happen. Both travelers

would still be able to access the train seating database, but concurrency control

would preserve data accuracy and allow only one traveler to purchase the seat.

9. Similarly, the concurrency control protocol is used to schedule transactions in such

a way as to avoid any interference between them. It allows only one transaction to

execute at a time; one transaction is committed before the next transaction is

allowed to begin.

6.2.1 Need of Concurrency Control

Several problems can occur when concurrent transactions execute in an

uncontrolled manner. The some of the problems are as follows:

1. The Lost Update Problem: This problem occurs when two transactions

that access the same database items have their operations interleaved in a way that makes

the value of some database item incorrect. Successfully completed update is overridden

by another user.

2. The Temporary Update Problem: This problem occurs when one

transaction updates a database item and then the transaction fails for some reason. The

updated item is accessed by another transaction before it is changed back to its original

value. Occurs when one transaction can see intermediate results of another transaction

before it has committed.

3. The Incorrect Summary Problem: If one transaction is calculating an

aggregate summary function on a number of records while other transactions are updating

some of these records, the aggregate function may calculate some values before they are

updated and others after they are updated.

6.3 CONCURRENCY CONTROL METHODS/SCHEMES

There are many concurrency control methods/schemes to prevent the conflicts

between the transactions. The following are some concurrency control methods:

6.3.1 Locks

1. A lock is a variable associated with the data item to describe its status.

2. Locks are used in concurrent transactions to ensure serializability.

3. It prevents undesired or inconsistent operations on shared resources by other

current transactions.

4. They are used to make the isolation property of transaction in the concurrent

environment.

5. They describe the status of the data item whether it has been modified or not.

6. A lock on any database object needs to be acquired by the transaction before

accessing it.

7. If transaction 'A' acquires a lock on a database object and another transaction 'B'

needs to access that database object, then the existing type of lock is checked.

8. According to the locking scheme, if the existing type of lock (transaction 'A') is

matched with another transaction's lock (transaction CB'), then transaction 4B' can

use that object.

9. But, if the existing type of lock (transaction 'A') is not matched with another

transaction's lock (transaction 'B'), then transaction attempting access is aborted or

blocked.

10. There are many types of locks but only one lock is used for each item in database.

Fig. 6.4: Concurrency Control Methods/Schemes

6.3.1.1 Types of Locks

The following are the types of locks:

I. Binary Locks

1. Binary lock has two states i.e. locked or unlocked.

2. When we use binary lock, it may assign 0 or 1 to the data items.

3. Locked state is represented by 1. It means item cannot be accessed.

4. Unlocked state is represented by 0. It means item can be accessed.

5. If a transaction 'A' wants to access a data item, then it must request for lock.

6. If the data item is already used by another transaction 4B, then transaction 'B' got

lock [1] on that date item. It means transaction 'A' cannot access that data item and

get zero [0] state.

7. It means transaction 'A' has to wait to access that data item until transaction 'B'

finished.

8. Binary lock follow some rules which are as follows:

• A transaction must get a lock on data item on which it wants to perform

read or write operation.

• After the read or write operation, transaction must unlock the data item.

• If any data item holds a lock, then no other transaction can make a lock on

that particular data item.

• No two transactions can get the lock on the same data item. It means only

one transaction can get the lock on a particular data item.

9. They are not used in practice because only one transaction can hold a lock on a

given data item at a particular time which is very impractical.

II. Shared Locks

1. In a binary lock, only one transaction can get the lock on a particular data item.

But in shared lock, more than one transaction can use shared fock at a particular

time.

2. It is denoted by 'S'.

3. Shared lock is used only for reading purpose. It means, if a transaction want to

read data then it will use shared lock on it.

4. Read lock is a shared lock. It means multiple transactions can have read lock on

the same item in order to read it.

5. If a transaction 'A' has a shared lock on data item 'M', then other transaction 'B' can

only read that data item 'M' not write.

6. For example:

Lock_S (M): → It is used to request a shared lock on data item 'M'.

Unlock (M): → It is used to unlock data item 'M'.

III. Exclusive Locks

1. In a binary lock, only one transaction can get the lock on a particular data item.

But in exclusive look, more than one transaction can use exclusive lock at a

particular time.

2. It is denoted by 'X'

3. Exclusive lock is used only for writing purpose. It means, if a transaction want to

write data then it will use exclusive lock on it.

4. Write tock is an exclusive lock. It means multiple transactions can have write lock

on the same item in order to write it.

5. If a transaction 'T1' has obtains an exclusive lock on a data item then another

transaction 'T2' cannot perform read but performs write operation.

6. If a transaction 'A' has a exclusive lock on data item 'M', then other transaction 'B'

can only write that data item 'M' not read.

7. For example:

Lock_X (M): → It is used to request an exclusive lock on data item 'M'.

Unlock (M): →It is used to unlock data item 'M'.

6.3.1.2 Compatibility of Locks

Compatibility of Locks Shared Exclusive

Shared True False

Exclusive False False

1. Shared lock is compatible with shared lock: According to this, more than one

transaction can read a data item. It means multiple transactions can have read lock

on the same item in order to read it.

2. Shared lock is not compatible with exclusive lock: According to this, if a data

item has exclusive lock, then no other transaction can make shared lock on that

particular data item.

3. Exclusive lock is not Compatible with exclusive lock: According to this, if a

data item has exclusive lock, then no other transaction can make exclusive lock on

that particular data item. No two transactions can make exclusive lock

simultaneously.

6.3.2 Concurrency Control Algorithms

To control the concurrency problems, there are two algorithms which as follows:

6.3.2.1 Pessimistic Approach

1. In this approach, if the transactions conflict with each other, then there should be

some delay in the transactions.

2. Two phase locking protocol based on pessimistic approach as follows:

• It is a common locking protocol which guarantees the serializability.

• It does not ensure the freedom from deadlock.

• It has two phases i.e. growing phase and shrinking phase.

(a) Growing Phase: In the growing phase, number of locks increases. In this

phase, all locks are requested and no one is released. When a transaction

begins, it is in a growing phase and required lock is provided.

(b) Shrinking Phase: In the shrinking phase, number of locks decreases. In

this phase, all locks are released and no one is requested. When a

transaction ends, it is in shrinking phase. It releases the lock and cannot get

any more lock.

6.3.2.2 Optimistic Approach

1. Optimistic approach is also known as validation or certification method.

2. In this approach, there is an assumption that conflicts in database operations are

very rare.

3. There is no checking process during the execution of a transaction. Transaction

runs unsynchronized and conflicts are checked only at the end.

4. According to this approach, first let the transaction run to the completion, then

check the conflicts before the transaction commits.

5. Advantages of Optimistic Method

• This technique is very efficient when conflicts are rare.

• The rollback involves only the local copy of data.

6. Disadvantages of Optimistic Method

• Conflicts are expensive to deal.

• Longer transactions are more likely to have conflicts and may be repeatedly

rolled back.

7. Non-Two phase locking protocol based on optimistic approach as follows:

(a) Graph Based Protocol

1. It is also known as tree protocol.

2. In this protocol, data items are arrange in a tree.

3. We must have prior knowledge about the order in which the database items

will be accessed.

4. (X, Y) are shows that X is parent of Y.

5. If there is directed path from X to Y then X is called ancestor of Y.

6. It ensures serializability.

7. The following are some rules of graph based protocol:

• No data can be accessed unless transaction locks it.

• Transaction can unlock data any time.

• Transaction after unlocking data cannot relock it again.

8. Advantages of Graph Based Protocol

• Unlocking may occur earlier which may lead to shorter waiting time.

• It is deadlock free, No rollback is required.

9. Disadvantages of Graph Based Protocol

• In most of the cases, it is not known prior what data will need to be lock.

(b) Time Stamp Based Protocol

1. Time stamp based protocol is used in relational databases to safely handle

transactions

2. In this protocol, we must have the prior knowledge of order of transactions

and data items.

3. The time stamp is assigned by the database system before the transaction

starts.

4. A unique fixed time stamp [TS(Ti)] is associated with each transaction.

5. It follows the serializability order.

6. There are two methods for assigning the time stamp to each

transaction as follows:

• Use a separate counter to assign the time stamp.

• Use a system clock to assign the time stamp.

7. We can implement time stamp on data item 'M' as follows:

• W-timestamp (M) :-> It is a time stamp for writing on data item 'M'.

• R-timestamp (M):-> It is a time stamp for reading on data item 'M'.

6.4 DEADLOCK

1. Deadlock is basically a mutual blocking between transactions.

2. A system is in deadlock state if there are set of transaction and every transaction is

waiting for other transaction to release lock.

3. Example of deadlock:

• There are two transactions CTP and 'T2'.

• Transaction 'T1' has exclusive lock and transaction 'T2' has shared lock

• Transactions 'Tl' and 'T2' execute concurrently.

• Transaction 'Tl' make exclusive lock (X) on data item 'A'.

• Transaction 'T2' make shared lock (S) on data item 'B'.

Tl T2

Lock-X(A)

Read (A, a)

a = a-50

Write (A, a)

 Lock-S(B)

 Read(B, b)

 Unlock (B)

 Lock-S(A)

 Wait.......

Lock -X(B)

Wait…………

• Transaction 'T2' make shared lock (S) on data item 'B' and want to make

shared lock on data item 'A'. But transaction 'T2' has to wait till the

transaction 'Tl' release an exclusive lock (X) on data item 'A'.

• On the other hand, transaction 'T' make exclusive lock (X) on data item 'A'

and want to make exclusive lock on data item 'B'. But the transaction 'TP'

has to wait till the transaction 'T2' release the shared lock (S) on data item

'B'.

• Both transactions 'Tl' and 'T2' cannot release the lock because shared and

exclusive locks are incompatible with each other.

• This is the situation where neither of the transactions can proceed. Both

transactions wait for each other to release the lock but both are

incompatible and cannot release the lock. This situation is called deadlock.

4. A deadlock can be resolved by aborting a transactions and breaking the cycle.

5. When deadlock occur, system must rollback one of transaction.

6. One transaction rollback the data that were locked by that transaction are unlocked

and is available to other transaction.

6.4.1 Reasons for the Occurence of Deadlock

A set of processes is in a deadlock state if every process in the set is waiting for an

event to release that can only be caused by some other process in the same set. The

following are some reasons for the occurrence of deadlock:

1. Mutual Exclusive: When a single process is used by two or more

processes, means a single resource if used for performing the two or more activities as a

shared based. But this is will also create a problem because when a second user request

for the system resource which is being used by the user.

2 Hold and Wait: A single process may need two or more system resources.

And suppose if a process have a single resource, and is waiting the second resource. Then

process can't leave the first resource and waiting for the second resource. So that there

will also be the condition of Deadlock.

3. No Preemption: If there is no rule to use the system resources. It means if

all the system resources are not allocated in the manner of scheduling. Then this will also

create a problem for a Deadlock because there is no surety that a process will release the

system resources after the completion.

4. Circular Wait: When two or more requests are waiting for a long period of

time and no one can access the resource from the system resources, then this is called as

Circular Wait. For example if two or more users request for a Printer, at a same tifrie,

they request to print a page. Then they will be on the Circular Wait means System will

display a busy sign.

Fig. 6.5: Circular Wait

Example of occurrence of deadlock: There exists a set of waiting transactions

{Processl,.,.,.,., Process 4} such that Process1 is waiting for data item that is held by

Process2, Process! is waiting for a data item that is held by Process3, so on. None of the

transactions can make progress in such a situation.

For avoiding a Dead Lock first of all we have to detect Dead-Lock means firstly

we have to detect why and how a Deadlock has occurred and then avoid or solve the

problems those are occurred due to occurrence of Deadlock.

Fig. 6.6: Deadlock condition

6.4.2 Deadlock Prevention

To prevent the system from the deadlock state. There are two methods as follows:

1. According to first method: Transaction manager should not allow a

transaction which goes in a waiting state for a data item. The following are some

rules/protocols which help to prevent deadlock state:

• Transaction manager should avoid the waiting cycles. He should use

deadlock prevention protocol so that system never enters in a deadlock

state.

• One protocol to ensure that hold and wait condition never occurs. Each

process must request and get all of its resources before it begins execution.

• Each process can request resources only when it does not occupy any

resources. If a process holding some resources, requests another resource

(new resource) which is not allocated to it, then a process must release all

the allocated resources so that it can access the new resource.

• If there are multiple requests for a particular resource, then each process

can access that resource in increasing order of priority.

2. According to the second method

• If the system enters in a deadlock state, then we should try to recover a

transaction from deadlock state by using deadlock detection and deadlock

recovery techniques.

6.4.3 Deadlock Detection

1. If a system has no deadlock prevention and no deadlock avoidance scheme, then it

needs a deadlock detection scheme with recovery from deadlock capability.

2. In the deadlock detection scheme, an algorithm is used to determine whether the

system entered in a deadlock state or not

3. The deadlock detection algorithm should be invoked periodically.

4. The deadlock detection algorithm is as follows:

Data Structure is as: Available [m]

Allocation [n, m] as in Banker's Algorithm.

Request [n, m] indicates the current requests of each process.

Let work and finish be vectors of length m and n, as in the safety algorithm.

The algorithm is as follows:

1. Initialize Work = Available

For i= 1 ton do

If Allocation (i) = 0 then Finish[i] = true else Finish[i] = false

2. Search an i such that

Finish[i] = false and Request (i)< Work

If no such i can be found, go to step 4.

3. For that i found in step 2 do: Work = Work + Alloeation(i)

Finish[i] = true

Go to step 2.

4. If Finish[i] ?true for some i then the system is in deadlock state else the

system is safe.

6.5 DATABASE SECURITY AND INTEGRITY

The information stored in database is very valuable for an organization and it must

be protected from unauthorized access and unwanted damage. Database security is a

method to protect database from unwanted damages due to various reasons like unwanted

access, physical damage, technical or mechanical damage, accidental loss, corruption of

data etc. The database security allows or disallows users from performing actions on the

objects contained within organizational database.

The database security is concerned with various policies which are framed by

DBA to protect data. The DBA is responsible for the overall security of the database

system. The DBA design overall policies, procedures and appropriate controls to protect

and safe the data in database.

6.6 DATABASE SECURITY

1. Database security is the protection of database from internal and external threats.

2. Security is important because database is very valuable. All decisions of

organization depend on data.

3. Data should be protected from unauthorized access.

4. Any corruption of data would affect the day-to-day operation.

6.6.1 Issues in Security

Sr.

No.

Issue Description

1 Data

Tampering

Data cannot be modified; or viewed during transit. In case of

distributed database where data moves between different sites,

data can be modified during transit. So data security is important.

2 Data Theft Data can be stolen from within the organization or from Internet

so data security is important.

3 Unauthorized

Access

Data should be protected from unauthorized users.

4 Password

Related

Threats

Usually users use their name, date of birth as password which can

easily be traced there for security is important to protect data in

the case of password threats.

6.6.2 Need/Requirement of Security

Sr.

No.

Issue Description

1 Confidentiality Data should be confidential and user should be able to see

the data he is supposed to see

2 Authentication This is a process of verify the user's identity on database.

Authenticity can be check after asking user name and

password.

3 Secure Storage After confidential data has been entry it should be store or

protected in secure database

4 Privacy of

Communications

DBMS should be able to secure the private data of use like

health, employment and credit card number etc.

5 Availability It is the duty of DBMS that data should be available to the

user when it is required. It is possible only if it is secure and

in authorized hands.

6 Authorization After authenticity authorization get information about

the operation that user may perform and the database user

may access that may be

• Read Authorization

• Insert Authorization

• Update Authorization

• Delete Authorization

• Drop Authorization

• Alteration Authorization

7 Integrity Integrity ensures that data is protected from deletion

and corruption while it is store in database and while it is

being transmitted over network.

6.6.3 Levels of Security

If database security has to maintain then it should be maintain at all levels. The

security levels are:

Fig. 6.7: Levels of Security

Sr.

No.

Level Description

1 Physical Level Database must be secure from armed and weapons.

2 Human Database should be secure from unauthorized users.

3 Network Network security is important if database allow to access

data , remotely. Network security features must be strong.

4 Operating

System

If operating system is weak then no strong security features of

a database can protect it from unauthorized access.

5 Database The database should be secured from outside world

(unauthorized people). Various database security methods are

discussed in section 9.1.4.

6.6.4 Different Methods of Database Security

There are different methods for protecting data. These methods are as follows:

Fig. 6.8: Different Methods of Database Security

6.6.4.1 View

1. View is logical table based on one or more tables.

2. Table on which view is made is called base table.

3. It is just like a table but does not store the data.

4. Using views, we can restrict the set of rows and columns of table.

5. User can only see the provided row and columns.

6. All operations performed on view effect the base table.

7. Syntax

Create view VI as

Select Emp_No, Name, Dept from EMP

Where City ='Chc';

VI is a view and all DML commands can be used on view VI.

6.6.4.2 Privilege

1. Privilege is a permission given to the user to access the database objects.

2. After getting the privilege, user can use any SQL command.

3. With the help of privileges, we can perform the following tasks:

• Create a table

• Select rows from table

• Insert new record in table

• Update data of table

• Delete data from table.

4. DBA give privileges to the users.

5. There are two commands used to give and withdrawal the privileges which are as

follows:

Fig. 6.9: Two Commands in Privilege

(a) Grant

• Granting a privilege to user means giving permission to user for some specific

task.

• Granting of privileges to users is done by Grand Command.

• On clause is used to specify the object name.

• To clause is used to specify user name.

• Syntax:

Grant <privilege> on <object name>to <user name>;

• Examples of Grant Command :

(a) Grant to user 1 for select the records on employee table, then the query will

be:

Grant Select on Emp to Userl;

(b) Grant to all users for select the records on employee table, then the query

will be:

Grant Select on Emp to Public;

(c) Grant all privilege to all the users on employee table, then the query will be:

Grant all on Emp to Public;

(b) Revoke

• Revoke withdraws granted privileges.

• Revoke takes back all the privileges given to the users.

• Syntax:

Revoke <privilege> on <table name> from <user name>;

• Example of Revoke Command:

Withdraw the select grant permission on employee table from user 1, then

the query will be:

Revoke Select on Emp from Userl;

6.6.4.3 Roles

1. Role is a mechanism that Is used to provide authorization.

2. It is a group of privileges.

3. A single person or group of persons can be granted a role.

4. Using roles, DBA can manage access privilege more easily.

5. Suppose there are two roles in college database.,

(a) Role 1: Which have created, after, drop, insert, select, update, and delete

privileges?

(b) Role 2: Which have select privilege only?

6. Role 1 will be provided to all the users related to staff. Role 2 will be provided to

all the users related to students.

7. When a new staff user will joint it will be provided Role 1 and get all the privileges

related to Role1. When a new student user will joint it will be provided Role 2 and

get all the privileges related to Role 2.

6.6.4.4 Encryption

1. Encryption is a technique by which we can convert the data in coding form.

2. This process of converting is called Encryption.

3. Encrypted key Is needed to convert the plain text to cipher text

4. Plaintext: The message or data which Is to be converted.

5. Cipher text: The converted data.

6. Cipher text is then transmitted to the network.

7. Decryption key is needed to decode the cipher text back to plain text.

8. The process of converting cipher text (coded data) into plain text (original data) is

called decryption.

Fig. 6.10: Techniques Used in Encryption

Techniques Used in Encryption

I. Substitution Ciphers

• In this technique, each letter Is replaced by another letter.

• For example: A Is replaced with D, B is replaced with E, C with F and so

on such as Attack becomes OWWDFN.

• This technique is not secure because It can be guess easily.

II. Transposition'Ciphers

• In this technique, letters are re-ordered not replaced.

• We arrange the letters In different order but not replace these letters with

new letters.

• For example: theft can be .coded as eftth.

6.6.4.5 Role of DBA in Security

• Database Administrator plays an important role to provide security.

• DBA is responsible to provide the overall security to the database.

• DBA has a special account which is called system account.

• DBA create new user and provide them user_id and password.

• He creates roles and assigns privileges to the role.

• DBA can assign or change the role of a user.

• DBA create views and assign to the user.

• DBA can also check the log file which describes the detail of a user.

• DBA can detect the violation area.

6.7 BASIC CONCEPTS OF SECURITY

1. Security. Policy

The purpose of a security policy is to elaborate the three general security

objectives of secrecy, integrity and availability, in the context of a particular system.

In general, security policy is largely determined within an organization rather than

imposed by mandate from outside. This is particularly so in the integrity and availability

areas. There are three main objectives to consider while designing a secure database

application:

Secrecy: It is concerned with improper disclosure of information. Information

should not be disclosed to unauthorized users. For example, a student should not be

allowed to examine other students' grades.

Integrity: It is concerned with improper modification of information or processes.

Only authorized users should be, allowed to modify data. For example, students may be

allowed to see their grades, yet not allowed to modify them.

Availability: It is concerned with improper denial of access to information. The

term denial of service is also used as a synonym for availability. Authorized users should

not be denied access. For example, an instructor who wishes to change a grade should be

allowed to do so.

2. Prevention.

Prevention ensures that security breaches cannot occur. The basic technique is that

the system examines every action and checks its conformance with the security policy

before allowing it to occur. This technique is called access control.

3. Detection

Detection ensures that sufficient history of the activity in the system is recorded in

an audit trail, so that a security breach can be detected after the fact. This technique is

called auditing.

4. Assurance

Security mechanisms, whether preventive or detective in nature, can be

implemented with various degrees of assurance. Assurance is directly related to the effort

required to threaten the mechanism. Low assurance mechanisms are easy to implement

but also relatively easy to disrupt. Subtle bugs in system/application software have led to

numerous security breaches. On the other hand, high assurance mechanisms are

notoriously difficult to implement. They also tend to suffer from degraded performance.

Note: Prevention is the more fundamental technique. An effective detection mechanism

requires a mechanism to prevent improper modification of the audit trail. Moreover,

detection is ultimately useful only to the extent that it prevents improper activity by

threatening punitive action.

6.8 DATABASE INTEGRITY

1. It concerned with correctness and consistency of data.

2. This is a main task in multi-user database.

3. Integrity violation may arise from many different sources like:

4. Typing error by data entry clerks.j

5. Logical errors in application.

6. Error in system software.

7. Result of all these violations in data corruption.

8. Database integrity is responsible for monitoring and detecting integrity violations.

9. When integrity violation occur, system then take following actions:

• Rejection the operation

• Reporting violation

• Returning the database to consistent state.

10. The following are the database integrity rules:

(a) Domain Integrity Rules: It is used to maintain the correct value of attributes, i.e.

for age attribute integrity rules should be in integer and should be positive and it

should be possible to specify upper and lower bounds for values of age.

(b) Entity Integrity Rules

• It is used to preserve the key uniqueness. (Primary key)

• It specifies that all entries are unique.

• There is no NULL entry in primary key.

(c) Referential Integrity Rules

• These rules are concerned with maintaining the correctness and consistency

of relationship among relations.

• It specifies that foreign key must have either a NULL value or match with

primary key value.

• It ensures not to enter invalid value.

• Referential integrity rule make possible not to delete a row in one table

whose matching foreign key value is existing.

6.9 RECOVERY

1. Recovery is the process of restoring the database after the failure.

2. Failure may be the result of system crash due to hardware or software.

3. Recovery is the responsibility of DBA (Database Administrator).

4. Various procedures and strategies (backup and recovery)are used in recovery to

protect the database.

5. Whenever a transaction is submitted to a DBMS for execution, the system is

responsible for making sure that either

• All the operations in the transaction are completed successfully and their

effect is recorded permanently in the database or.

• The transaction has no effect on the database or on any other transactions.

6. Before understand the concept of recovery, it is important to understand the cause

of failures.

6.9.1 Cause/Reason of Failure

Failures are generally classified as transaction, system, and media failures. There

are several possible reasons transaction to fail in the middle of execution:

I. System Crash/Computer Failure

1. In system crash, system hangs up and needed to reboot.

2. A hardware, software, or network error occurs in the computer system during

transaction execution.

3. In this case, the data which is in main memory is lost and transaction rolls back.

4. The permanent data which is in permanent storage devices are not affected by

system crash.

5. The reasons of this failure are hardware, database software and operating system.

II. User Error

1. User drops a full table.

2. User deletes a record.

3. User purchases the hardware of poor quality.

III. Statement Failure

1. A transaction which has multiple statements and one statement might fall.

2. Result will be error message by database software or operating system.

3. The recovery in this case will be automatic because the transaction will rollback

and user can re-execute the statement again,

4. Reasons may be

• Selecting rows from- a table which doesn't exists.

• Inserting records by there is not enough space.

Fig. 6.11:-Reasons of Failure

IV. Network Failure

1. Network failure effect distributed database where data is .coming from different

sites.

2. Reason may be

• Client server configuration

• Communication software failure

V. Disk Failure

1. This may happen during a read or a write operation of the transaction.

2. Some disk blocks may lose their data because of a read or write mal function or

because of a disk read/write head crash.

VI. Media Failure (Disasters)

1. This is most dangerous failure.

2. It is very difficult to recover the data effect from these failures.

3. It has only one solution is to take regular backup, i ;,

4. It is because of fires, floods and earthquakes. We will discuss disaster and its

management techniques in section 9.3.

6.9.2 Terms Used in Recovery Process

1. To understand the concept of recovery, we must understand the concept of main

memory (RAM) and secondary memory (Hard disk).

2. Each disk is partitioned into blocks.

3. Block in main memory is called buffer block or disk buffer.

4. A block in disk is called physical block.

5. When a transaction starts, data is transfer form physical block to buffer block.

6. When a transaction ends, data is transfer back from buffer block to physical block.

7. There will be two main operations which are as follows:

(a) Input Operation: Transfer data from physical block to buffer block.

Fig. 6.12: Input Operation

(b) Output Operation: Transfer data from buffer block to physical block.

.Main MemoryDisk

Fig. 6.13: Output Operation

8. Each transaction has a private working area where transaction executes. This area

is created and removed according to the transaction.

For example: we want to perform the following transaction.

Read (A, .a)

a = a-100

Write (A, a)

Three operations will be performed to complete the above transaction as follows:

(a) Read (A, a)

(b) Write (A, a)

(c) Output (X)

(a) Read (A, a)

• Find the database item 'A' in block X of disk.

• Then, transfer database item 'A5 in block X from disk to main memory.

• In main memory, database item 'A' will be copy in temporary variable "a5.

• The arithmetic operation will be performed as

Fig, 6.14: Read Operation

(b) Write (A, a)

• The data item 'A' belongs to CX' block.

• If 'X5 is in main memory, then data of temporary variable ca' is copy to data item

'A'.

• If 'X' is not in main memory then input operation performed again.

Fig. 6.15: Write Operation

(c) Output X

• After performing the write operation, block CX' is now written in disk.

• Now, output operation is performed.

• Database item 'A9 is copy to disk permanently.

Fig. 6.16: Output Operation

6.10 ATOMICITY OF TRANSACTION

1. Atomicity means either all operations of the transaction are reflected properly in

database or none.

2. It ensures that either a transaction ends with committed state or rolled back state.

3. Committed state comes, when transaction end with success and database reaches

in a new consistent state.

4. Aborted state comes, when transaction end with failure and database restores the

previous consistent state. A failed transaction enters in the aborted state and 'rolled

back' or 'undone'.

5. According to atomicity, we cannot perform half operations of any transaction.

6. It means we should perform all the operations of the transaction or we should not

perform any operation.

7. In short, atomicity means either 100% modification on 0% modification.

8. Ensuring atomicity is the responsibility of the database system itself. It is handled

by a component called the transaction management component,

9. For example:

There are two accounts 'A' and 'B'. Account 'A' contains Rs.2000. Account 'B'

contains Rs.1000.

The transaction Tl transfers Rs.100 from account "A" to account 'B'.

Transaction Tl

A is account Read (A, a) A = 2000, a = 2000

a is temp variable a=a-100 a -1900

B is account write (A, a) A =1900

b is temp variable output (A, X)

AX, BX buffer block - Read (B,b) B = 1000, b= 1000

 b = b + 100 b =1.100.

 Write (B,'b) B = 1100

 Output (BX)

Example 6.1: Example of Atomicity

In the transaction Tl, if a system crash occurs after the output (AX) but before

output (BX), then the output will be:

A is account Read (A, a) A = 2000, a = 2000

a is temp variable a = a- 100 a= 1900

B is account write (A, a) A =1900

 output (A, X)

After the reduction of Rs.100 from account 'A', system crashes. Now, system is in

inconsistent state and there is a loss of Rs.100.

Account A has Rs. 1900

Accounts has Rs. 1000

To recover this loss, if we execute transaction Tl again, then database will again in

inconsistent state because account 'A9 has Rs.1900 and account 'B9 has Rs.1000.

We cannot recover this Rs.100 again if we re-execute the transaction Tl after the

modification. This example gives the concept of atomicity which means either

100% modification on 0% modification.

10. Atomicity can be achieved by transferring the output in storage without modifying

database. There are two ways to achieve atomicity as follows:

Fig. 6.17: Methods of Atomicity

6.10.1 Log Based Recovery

1. A log file is maintained in Log based recovery.

2. A log file is used to maintain the record of all the operations of database.

3. Basically, it is a sequence of log record.

4. The following are the different types of log records:

1 <Start> Log Record It contains the information about the start of each

transaction and used to differentiate the state of

 different transactions. <Ti start>

2 <Update> Log Record It updates the data item under the transaction.

<Ti, Xj, VI, V2> Ti is transaction Xj is data item

VI is old value V2 is new value

3 <Commit > Log Record It tells that the transaction is completed. When

transaction Ti successfully completed, then log

record is store in the log file.

4 <Abort> Log Record It tells that the transaction is not completed

When transaction Ti is not successful completed

then it will be abort and log record is stored in

log file.

5. After the log record, database can be modified.

6. We can recover the data from the log record. In the previous example discussed in

atomicity (example 9.1), when a system crashes after the output (AX) but before

output (BX), there is a loss of Rs.100 after the execution of transaction Ti.

7. We can recover that loss by copying the old value of ' A' Rs.2000 from log record

to database. It is called undo operation.

8. The following are the two techniques for log based recovery:

• Differed Database Modification

• Immediate Database Modification

6.10.1.1 Deffered Database Modification

1. During write operation, the modified value of local variable is stored in log record

not in database.

2. After the successful execution of transaction, the modified value is copied in the

database.

Read (A, a)

= a-100

write (A, a)

Read (B, b)

= b+100

Write (B, b)

Read (C, c)

= C-100

Write (C,c)

3. If the transaction fails to complete, then the modified value and log record in

ignored. In this case, the value of data item maintains its old value.

4. For example:

There are two accounts 'A' and 'B'. Account 'A' contains Rs.2000. Account 'B'

contains Rs. 1000. Account 'C' contains Rs.3000.

The transaction TI transfers Rs.100 from account 'A' to account 'B'. The

transaction T2 withdraws Rs.100 from account 'C'.

Transaction Tl Transaction T2

The transactions Tl and T2 will execute in sequence.

In the deferred database modification, data will be modified in the database if log

contain both <Ti, start> and <Ti, commit> otherwise transaction will rollback and

updation will be cancelled.

During Transaction Tl

Tl Log Database

Read (A, a) <T1, start> (Buffer)

a = a- 100 ^TUA, 1900>

Write (A, a) <T1,B, 1100>

Read (B, b) <T1, commit> A = 1900

B = b+100 B = 1100

Write (B,b)

During Transaction T2

T2 Log Database

Read (C, c) <T2, Start>

c = c-200 <T2, C, 3800> C = 28'00

Write (C, c) <T2, commit>

Example 6.2: Example of Deferred Database Modification

6.10.1.2 Immediate Database Modification

1. This technique allows database modification while transaction is still in active

state.

2. If the system crashes, then the transaction abort and log record is used to restore

value.

3. The log record can restore the value with the help of undo operation.

<Ti,Xj,Vold,Vnew>

Ti = Transaction id

Xj = Data item

Void = Old value

Vnew = New value

4. For example:

There are two accounts 'A' and 'B'. Account 'A' contains Rs.2000. Account 'B'

contains Rs.1000.Account 'C' contains Rs.3000.

The transaction Tl transfers Rs. 100 from account 'A' to account CB'. The

transaction T2 withdraws Rs. 100 from account 'C'.

During Tl

Tl, Log Database

Read (A, a)

a = a- 100 <Tl,Start>

Write (A, a) <T1,A,2000? 1900> .A = 1900

Read (B, b)

B = b + 100 <T1,B, 1000, 1100> B = llOO

Write (B, b)

 <T1, Commit>

During Transaction T2

T2

Read(C, e) <T2,Start>

c = c - 200 <T2, C? 4000, 3800> C = 3800

* Write (C, c)

 <T2?Commit>

Example 6.3: Example of Immediate Database Modification

6.10.2 Shadow Paging

1. Database is divided into blocks.

2. Blocks are of fixed lengths.

3. We use a page table. The page table has entries for each database table.

4. Shadow paging technique use two page tables during transaction execution.

• Current page table

• Shadow page table

5. At beginning of transaction both pages are identical.

6. Each page table entry contains a pointer to a page on disk.

7. Current page table may change during write operation.

8. Shadow page table never change during transaction.

9. There are two cases of recovery in the shadow paging technique which are as

follows:

• Case 1: If system crashes before the successful completion of transaction,

then current page table will removed. This is just like undo operation.lt

means if system fail before commit transaction then it will get the previous

state of data from shadow table.

• Case 2. If system crashes after the successful completion of transaction,

then current page table will become the shadow page table. It means if

system fails after commit transaction then it will recover the data from

shadow table,

6.11 DISASTER MANAGEMENT

1. "A disaster can be defined as an occurrence either nature or manmade that causes

human suffering and creates human needs that victims cannot alleviate without

assistance".

2. There are four main types of disaster as follows:\

• Natural disasters: Natural disasters include floods, hurricanes,

earthquakes and volcano eruptions that can have immediate impacts on

human health.

• Environmental emergencies: Environmental emergencies include

technological or industrial accidents, usually involving hazardous material,

and occur where these materials are produced, used or transported.

• Complex emergencies: Complex emergencies include a break-down of

authority, looting and attacks on strategic installations. Complex

emergencies include conflict situations and war.

• Pandemic emergencies: Pandemic emergencies include a sudden onset of

a contagious disease that affects health but also disrupts services and

businesses, bringing economic and social costs.

Disaster Management

1. Disaster management is also known as emergency management.

2. It avoids both natural and man-made disasters.

3. "Disaster management can be defined as the organization and management of

resources and responsibilities for dealing with all humanitarian aspects of

emergencies, in particular preparedness, response and recovery in order to lessen

the impact of disasters."

4. It involves preparedness before disaster, rebuilding and supporting society after

natural disasters such as, earthquakes, drought, tsunami etc.

5. The following are the techniques to manage disaster:

• Disaster Management Teams: Worldwide, governments, business and

non-business organization are setting up disaster or crisis management

teams in order to manage the disaster. The disaster management teams are

broadly divided into three parts namely: the policy team, the management

team and the liaison team.

• Systematic Planning: Disaster management involves systematic planning

to avoid a disaster. If disaster occurs, then systematic planning is required

to overcome the crisis arising out of disaster. It indicates, what to do, when

to do, how to do and who is to do certain activities to manage and

overcome the problems of disaster.

• Training to Manpower: There is a need to provide proper training to the

disaster management personnel to manage a disaster effectively. The

training will help to develop and improve the disaster management skills in

the people.

• Suitability: Disaster management is required before and after a disaster. It

is suitable before a disaster in order to avoid a disaster, or to caution the

people. It is also very much required after a disaster takes place, in order to

undertake rescue, relief and rehabilitation measures at the time of floods,

earthquakes.

• Stability: Normally, disaster management teams lack stability. They are

formed just prior to a disaster in order to avert it, whenever possible. But

there should be some permanent disaster management teams.

Questions

1. What is Concurrency Control? Why is it required?

2. Explain the Concurrency Control schema based on timestamp protocol.

3. What are AICD properties of transaction? Explain the uses of each.

4. What are the different locking techniques for Concurrency Control?

5. What is a lock? Differentiate between exclusive and shared lock. Give suitable

examples also.

6. What is time stamping?

7. Explain Concurrency Control without locking.

8. What is deadlock? Give an appropriate example.

9. Explain the following:

(a) Deadlock prevention

(b) Deadlock detection

10. What are the necessary conditions for deadlock?

11. Define Database Security. What are the various issues addressed by it?

12. What are the different security mechanisms?

13 What are the different access rights that may be given to the users of a database?

14 What do you mean by data encryption? How is it achieved?

15 Explain the following with suitable example:

(a) Entity Integrity Constraint.

(b) Domain integrity constraint

16 What is the role of DBA in security?

17. What is the concept of recovery in database? What are the techniques used for it.

18 What is deferred update and immediate update?

19 What is shadow paging?

20 Explain transaction rollback.

21 Explain the recovery and atomicity of transaction in detail with suitable examples.

22 What is log based recovery?

23 Discuss the disaster management in detail.

UNIT 7: SQL

COURSE: DBMS

7.1 INTRODUCTION TO SQL

7.2 INTRODUCTION TO SQL*PLUS

7.3 DIFFERENCE BETWEEN SQL AND SQL*PLUS

7.4 STARTING SQL*PLUS

7.5 DATATYPES

7.6 PARTS OF SQL

7.6.1 DDL (Data Definition Language)

7.6.2 DML (Data Manipulation Language)

7.6.3 DCL (Data Control Language)

7.6.4 TCL (Transaction Control Language)

7.6.5 Embedded SQL

7.6.6 Integrity

7.7 SQL OPERATORS

7.7.1 Arithmetic Operator

7.7.2 Comparison Operator

7.7.3 Logical Operator

7.7.4 Set Operator

7.7.5 Concatenation Operator

7.8 SQL FUNCTIONS

7.8.1 Single Row Functions

7.8.2 Group/Aggregate Functions

7.9 JOINS

7.9.1 Equi Join

7.9.2 Cross Join

7.9.3 Outer Join

7.9.4 Self Join

7.10 ROLL UP OPERATION

7.11 CUBE OPERATION

7.12 NESTED QUERY

7.13 SUBQUERY

7.14 VIEW

7.14.1 Creating a View

7.14.2 Modifying a View

7.14.3 Inline View

7.14.4 Materialized View

7.14.5 Dropping a View

7.14.6 Advantages of View

7.15 DISADVANTAGES OF SQL

7.16 KEY POINTS

7.16.1 SQLAlias

7.16.2 Null Values in SQL

7.16.3 Difference between Delete and Truncate Command

7.2 INTRODUCTION TO SQL

• SQL stands for "Structured Query Language".

• It is a widely used database language.

• It has been adopted as the standard relational database language.

• It can be pronounced as "SQL" or "SEQUEL".

• It was first introduced as a commercial database system in 1979 by Oracle Cooperation.

• SQL is different from other programming languages like C, C++, Java, Visual Basic etc.

• Unlike other languages, there is no need to specify the sequence of steps to perform any

particular task, SQL statements directly provides the desired result.

• It is a non-procedural, pure English language rather than coding language but it has fixed

syntax (structure).

• It processes set of records rather than one record at a time.

• It is made up of various commands and used to define, access and manipulate data in

RDBMS.

• It is just not for query the database but it can do much more.

• All the programs written in SQL are portable. They can be moved from one database to

another with little modification.\

• All the major relational database management system support SQL. SQL has proved to

be very effective for heavy databases.

Functions/Tasks of SQL

• SQL can define the structure of database.

• It can execute the queries against a database.

• It can create new databases.

• It can create new tables in a database.

• It can insert records in a database.

• It can update records in a database.

• It can delete records in a database.

• It can retrieve data from a database.

• It can create views and stored procedures in a database.

• It can set permissions for users so that they can use the database.

• It can specify the security constraints in the database.

• It can create, replace and alter the objects.

• It guarantees the database consistency and language.

7.2 INTRODUCTION TO SQL*PLUS

• SQL*PLUS is command line tool.

• It allows user to type SQL statements to be executed directly against an Oracle database.

• With the help of SQL*PLUS, a user can perform the following tasks:

• User cap access Oracle databases with command procedures.

• User can interactively use the SQL commands (Enter, Edit, Store and Retrieve).

• User can produce reports.

• Access and copy data between SQL databases.

• Send messages and accept responses from an end user.

• List columns of any table.

7.3 DIFFERENCE BETWEEN SQL AND SQL*PLUS

Sr.

No
.

SQL SQL*PLUS

1 It is a standard language to access

RDBMS (Relational database

management system)

It is a tool to implement SQL. It has a command

line interface.

2 SQL commands are terminated by

semicolon (;).

SQL*PLUS commands do not need semicolon (;)

for termination. It only needs continuation

character (-).

3 Data manipulation is possible in

SQL; Data manipulation language/

command (DML) is used to modify

the data.

Data manipulation is not possible in

SQL*PLUS.

4 Commands are stored in buffer. Commands are not stored in the buffer.

5 Commands are entered in one line

or more than one line.

Commands are entered in one line at a time.

6 For formatting purpose, SQL use

various functions.

For formatting purpose, SQL*PLUS use various

formatting commands.

7 SQL commands are to be executed

again and again.

SQL*PLUS commands remain in effect until any

new command overwrite it.

7.4 STARTING SQL*PLUS

We can start the SQL*PLUS with either of the two methods. The following steps should

be considered to start the SQL*PLUS:

Method 1

Step 1: Locate the SQL PLUS (Oracle Shortcut) on the desktop.

Step 2: Press <Enter> or 'double clock' on the 'Oracle Shortcut'.

Method 2

If the SQL PLUS (Oracle Shortcut) is not available on the desktop, then follow the

following steps:

Step 1: Click on 'Start' ‘All Programs’ ‘Oracle-OraDb10g_home3'

'Application Development' 'SQL PLUS'.

Step 2: Enter the 'User Name' in the dialog box. The 'User Name' should be 'Scott'.

Step 3: Enter the 'Password' in the dialog box. The 'Password' should be 'Tiger'.

Step 4: Enter the 'Host String' in the dialog box.

Step 5: Press the "OK" button to complete the Oracle log in process, then the

SQL*PLUS prompt (SQL>) will appear.

7.5 DATATYPES

• Oracle uses the tables for storing and maintaining the information. Table consists of rows

and columns.

• Each column contains only one type of data which we must define.

• A data type is an attribute that specifies the type of data.

• In short, a data type is a classification of a particular type of data (information).

• When we create a table, we must specify a data type for each of its columns.

• The following table show a list of different data types commonly used in Oracle:

Sr.
No.

Data Type Description

1 Char (n) A fixed length character string with user specified length. The

characters can be used in it.

n = number of characters

2 Varchar (n) A variable length character string with user specified length.

n = number of characters

3 Int A numeric value can be specified. Character cannot insert.

4 Numeric (P,D) A floating number can be inserted.

P indicate total digits.

Whereas D indicate number of digits after decimal.

For example: (3,1) allows 44.5 to be inserted but not 444.5 or 0.32.

5 Float (n) A floating number with decimal value up to n number.

6 Date It can contain date with year, month and day of month.

7 Time It can contain time in hours, minutes and seconds.

7.6 PARTS OF SQL

• SQL consists of various commands. SQL commands are instructions used to perform the

various operations like create, delete and manipulate the data in database.

• SQL commands are helpful in searching the data, drop the table, add data to table, set

permissions for users etc.

• SQL is an easy, understandable and unified language.

• SQL languages/commands/statements are categorized into six major parts based on their

functionality which are as follows:

Fig. 10.1: Parts of SQL

7.6.1 DDL (Data Definition Language)

It is used for defining data structures. These SQL commands are used for creating,

modifying and dropping the structure of database objects (relations).

These commands basically create, modify and drop the relations (tables) used in the

database.

The following are the various DDL commands:

Fig. 10.2: Parts of DDL

1. Create: The create table command is used to create a new table. It creates the relation

(table) in a database. It includes its name, names and attributes of its columns. One can create

any number of columns with this command. If we want to add or remove the columns after

creating the table then we use alter table.

Syntax of Create New Table:->

SQL>CRE^VTE TABLE table_name

(

column_name1 data type,

column_name2 data type,

…….

column_nameN datatype

);

Note: We can also create a table from existing table by copying the existing table's column.

Syntax of Create Table from Existing Table:->

SQL> CREATE TABLE new_table

As (SELECT * from old_table);

Examples of Create Command:-

1. We want to create a table 'STUD' in SQL.

Then the query will be:

SQL> CREATE TABLE STUD

(

NAME char (40),

CLASS char (5),

ROLL NUMBER (8)

);

Table created

2. We want to create a table 'BMP' in SQL. (Mostly queries of this book are based on this

table 'EMP')

SQL> CREATE TABLE EMP

(

ENAME char (15),

DEPTNO int,

JOB char (10),

EMPNO int,

SAL int,

HIREDATE int,

MGR int,

CITY char (10),

COMM int

);

Table created

2. Alter: It alters the structure of table from database. It alters the table along with the

columns. One can add one more than one column in a particular table with alter command. With

this command, filed type can be changed or a new field can be added. It is used to enable or

disable the integrity constraint. It is used to modify the column values and constraints.

Syntax of Alter Command:

SQL> ALTER TABLE table_name

ADD/MODIFY/DROP column_name datatype;

Examples of Alter Command:

1. To add a column (DOB) in an existing table 'BMP'. Then the query will be:

SQL> ALTER TABLE EMP

ADD DOB date;

Table altered

2. To add multiples columns (DOB and MOBNO) to an existing table 'EMP'. Then

the query will be:

SQL>ALTER TABLE EMP

ADD (DOB date, MOBNO (11));

Table altered

3. Drop: With the drop command, we can drop the columns from table or we can remove

the table. It drops the column or constraints from the table. It deletes the string of a table. It

cannot be recovered. It use with caution. Drop operation is used with the alter table command. It

removes single column or multiple columns.

(a) Dropping Column: If we want to remove column, then we use drop operation

with alter table command.

Syntax of Dropping the Column:

SQL>ALTER TABLE table_name

DROP COLUMN column_name;

Examples of Dropping the Column:

1. To drop a column 'City' in an existing table 'EMP'. Then the query will be:

SQL>ALTER TABLE EMP

DROP COLUMN CITY;

Table altered.

2. To drop multiple columns (Hiredate and City) in an existing table 'EMP'. Then the

query will be:

SQL>ALTER TABLE EMP

DROP COLUMN (HIREDATE, CITY);

Table altered.

(b) Dropping Table: If we want to remove the table, then there is no need to use it

with alter table command. We can directly remove one or more columns with drop table

command.

• This command removes one or more table definitions and all data, indexes, triggers,

constraints and permission specifications.

• If we drop a table with drop table command, it deletes all rows from that particular table.

The table structure is also removed from the database and it cannot get back.

Syntax of Dropping the Table

SQL> DROP TABLE table_name;

4. Truncate: It removes all the records from a table and memory. It releases the memory

occupied by the records of the table. Data cannot be recovered after using the truncate command.

Truncate command removes all the rows from a table.

Syntax of Truncate Command:

SQL> TRUNCATE TABLE table_name;

Example of Truncate Command:

We want to delete all rows from the table 'EMP'. Then the query will be:

SQL> TRUNCATE TABLE EMP;

5. Rename: It is used to rename the old table with a new name. The data will remain same,

only name of table will be change with 'Rename Command'.

Syntax of Rename Command:

SQL> RENAME <Old Table_Name>to<New Table_Name>;

Example of Rename Command:

If we want to change the name of table 'EMP' to new name 'EMPLOYEE'. Then the

query will be:

SQL>RENAME EMP TO EMPLOYEE;

Note: We use drop command for tables and delete command for records.

7.6.2 DML (Data Manipulation Language)

• These commands are used for inserting, retrieving, deleting and modifying the data in a

relation or a table.

• It includes the query language based on both relational algebra and tuple relation.

• These commands do not implicitly commit the current transaction.

• The folio wing are the various DML commands:

Fig. 10.3: Parts of DML

1. Insert

• When a new table is created, there is no data in the table.

• Insert command is used to insert the records in the new table.

• Insert command is used to add records to an existing table.

• 'Values clause' is used with inset command. This command will insert value in all the

columns of a table in sequence.

Syntax of Insert Command:

SQL> INSERT INTO table_name

VALUES (value1, valueZ, valueS,. ...);

OR

SQL> INSERT INTO table_name (column1, column2, column3,......)

VALUES (value1, value2, value3,. ..);

Examples of Insert Command:

1. Insert record in different order. Then the query will be:

SQL> INSERT INTO EMP (name, city, salary, emp_no)

VALUES ('Mona','Nba', 4500, 4);

2. Insert the Null value in record. Then the query will be:

SQL> INSERT INTO EMP

VALUES (3,'Mona', Null, 4000);

3. Insert the records in selected columns. Then the query will be:

SQL> INSERT INTO EMP (name, city)

VALUES ('Mona', 5000);

4. Insert the values in the table 'EMP'. Then the query will be:

SQL> INSERT INTO EMP VALUES ('Nidhi',20,'Clerk',6258,900,9-5-83,

6801,'Chd');

SQL> INSERT INTO EMP VALUES ('Aastha',30,'SaIesman',6388,1500,1-12- 89,

6587, 'Delhi', 300);

SQL> INSERT INTO EMP VALUES ('Sachin',30,'Salesman',6410,1350,25-1-

92,6587,'Pta',500);

SQL> INSERT INTO EMP VALUES ('Rohit',20,'Manager',6455,2875,27-12-

91,6728,'Nba');

SQL> INSERT INTO

EMP

VALUES

('Rahul',30,'Salesman',6543,1350,28-5-

87,6587,'Nba',1400);

SQL> INSERT INTO EMP VALUES ('Aditya',30,'Manager',6587,2750,17-8-

86,6728,'Pta');

SQL> INSERT INTO EMP VALUES ('Siddharth',10,'Manager',6671, 2550,29-9-

80,6728,'Chd',Null);

SQL> INSERT INTO EMP VALUES ('Kunar,20,'Analyst',6677,3000,8-12-82,

6455,'Delhi',Null);

SQL> INSERT INTO EMP VALUES ('AkhiP,10,'President',6728,5000,2-11-

85,Null,'DeIhi',NulI);

SQL> INSERT INTO EMP VALUES ('Prathiba',30,'Salesman',6733,1600,4-6-

85,6587,'Pta',0);

SQL> INSERT INTO EMP VALUES ('Manmeet',20,'Clerk',6765,1050,11-1-

84,6677;'Ldh',Null);

SQL> INSERT INTO EMP VALUES ('Navreet',30,'Clerk',6800,950,25-3-

84,6587,'Pta',Null);

SQL> INSERT INTO EMP VALUES ('Saira',20,'Analyst',6801,3000,15-4-

80,6455,'Chd',Null);

SQL> INSERT INTO EMP VALUES ('Amit',10,'Clerk',6823,1400,25-8-

85,6671,'Ldh',Null);

After inserting, values, the table 'EMP' will look like:

EMP

ENAME DEPTN

O

JOB EMPN

O

SAL HIREDAT

E

MGR CIT

Y

COM

M

Nidhi 20 Clerk 6258 900 9-5-83 6801 Chd

Aastha 30 Salesma

n

6388 150

0

1-12-89 6587 Delhi 300

Sachin 30 Salesma

n

6410 135

0

25-1-92 6587 Pta 500

Rohit 20 Manager 6455 287

5

27-12-91 6728 Nba

Rahul 30 Salesma

n .

6543 135

0

28-5-87 6587 Nba 1400

Aditya 30 Manager 6587 275

0

17-8-86 6728 Pta

Siddharth 10 Manager 6671 255

0

29-9-80 6728 Chd

Kunal 20 Analyst 6677 300

0

8-12-82 6455 Delhi

Akhil 10 Presiden

t

6728 500

0

2-11-85 Delhi

,

Prathiba 30 : Salesma

n

6733 160

0

4-6-85 6587 Pta 0

Manmeet 20 Clerk 6765 105

0

11-1-84 6677 Ldh

Navrget 30 Clerk 6800 950 25-3-84 6587 Pta

Saira 20 Analyst 6801 300

0

15-4-80 6455 Chd

Amit 10 Clerk 6823 140

0

25-8-85 6671 Ldh

NOTE: (Mostly queries of this book are based on this table 'EMP')

2. Select: Once data in inserted into a table, the next step is to view the data contained in the

table.

• In order to view the data contained in the table, the select statement is used.

• Select statement is a powerful tool and a most commonly used command.

• It is used to retrieve the data from a table in a database.

• We can also use arithmetic operators in select statement (see example 4, 5 and 6 of select

statement).

• With the help of select command, one can retrieve information from one column or more

than one column.

• The basic select statement has 6 clauses which are as follows:

Fig. 10.4: Six Clauses of Select Statement

(a) Select: The select clause specifies the table columns that are retrieved. It always

use with 'From Clause'.

Syntax of Select Command:

SQL> SELECT * FROM table_name;

OR

SQL> SELECT column_list FROM table_name

[WHERE Clause]

[GROUP BY Clause]

[HAVING Clause]

[ORDER BY Clause];

(b) From: From clause specifies the table accessed. It is mandatory. It always use

with 'Select Command'.

Syntax of From Clause:

SQL> SELECT.* FROM table_name;

OR

SQL> SELECT column_list FROM table_name

[Where Clause]

[Group By Clause]

[Having Clause]

[Order By Clause];

(c) Where: Where clause is used when we want to retrieve the specific information

from a relation excluding other irrelevant data.

Syntax of Where Clause:

SQL> SELECT column_list FROM table_name

[WHERE Clause];

Examples of'-Select Command', 'From Clause' and 'Where Clause':

1. Display all the information of all the employees from relation 'EMP'. Then the query will

be:

SQL> SELECT * FROM EMP;

Result:

BMP

ENAME DEPTN

O

JOB EMPN

O

SAL HIREDAT

E

MG

R

CITY COM

M

Nidhi 20 Clerk 6258 100 9-5-83 6801 Chd

Aastha 30 Salesma

n

6388 1500 1-12-89 6587 Delhi 300

Sachin 30 Salesma

n

6410 1350 25-1-92 6587 Pta 500

Rohit 20 Manager 6455 2875 27-12-91 6728 Nba

Rahul 30 Salesma

n

6543 1350 28-5-87 6587 Nba 1400

Aditya 30 Manager 6587 2750 17-8-86 6728 Pta

Siddharth 10 Manager 6671 2550 29-9-80 6728 Chd

Kunal 20 Analyst 6677 3000 8-12-82 6455 Delhi

Akhil 10 Presiden

t

6728 5000 2-11-85 Delhi

Prathiba 30 Salesma

n

6733 1600 4-6-85 6587 Pta 0

Manmeet 20 Clerk 6765 1050 11-1-84 6677 Ldh

Navreet 30 Clerk 6800 950 25-3-84 6587 Pta

Saira 20 Analyst 6801 3000 15-4-80 6455 Chd

Amit 10 Clerk 6823 1400 25-8-85 6671 Ldh

2. Display only the name, job and salary of all the employees from table "EMP55. Then the

query will be;

SQL> Select ENAME, JOB, SAL

From EMP;

Result:

3. Display name, city and salary of employees from relation 'EMP' where salary of each

employee is increased by 1000. Then the query will be:

SQL> SELECT ENAME, CITY, SAL + 1000

FROM EMP;

Result:

4. Display the name and salary of employees whose salary is less than 5000. Then the query

will be:

SQL> SELECT ENAME, SAL from EMP

WHERE SAL <5000;

Result:

5. Display the names of all the employees belonging to the department number 10 from the

relation 'BMP'. Then the query will be:

SQL>SELECT ENAME FROM EMP

WHERE DEPTNO = 10;

Result:

ENAME

Siddharth

Akhil

Amit

(d) Order By: The 'Order By Clause' is used with 'Select Statement' to sort the results

either in ascending or descending order. By default, it provides results in ascending order. We

use column values to sort the table. We can use more than one column to sort the results.

Syntax of Order By Clause:

SQL> SELECT column_list FROM table_name

[ORDER BY Clause];

Examples of Order By Clause:

1. Sort the table 'EMP' by the salary of employees. Then the query will be:

SQL>SELECT ENAME SAL FROM EMP

ORDER BY SAL;

Result:

2. Sort the table 'BMP', by the name and salary of employees. Then the query will be:

SQL>SELECT ENAME SAL FROM EMP

ORDER BY ENAME, SAL;

Result:

(e) Group By: It is used to divide the rows into smaller groups. The 'Group By

Clause' is used with 'Select Statement' to combine a group of rows based on the values of a

particular column or expression. It groups the result after it retrieves the rows from a table.

'Group functions' can be used with 'Having Clause' and cannot be used with 'Where Clause'.

Syntax of Group By Clause:

SQL> SELECT column_list FROM table name

[GROUP BY Clause];

Example of Group By Clause:

To find the total amount of salary spent on each department from the table 'EMP'. Then

the query will be:

SQL>SEI.ECT DEPTNO, SUM (SAL) AS TOTAL SALARY FROM EMP

GROUP BY DEPTNO;

Group within Group: 'Group By Clause' can be used to provide results for 'Groups Within

Groups'. Suppose we want to know the average amount of salary spent on job type 'Clerk' from

department number '20'. We calculate the total amount of salary spent on each department. This

is one group. Then we calculate the average amount of salary spent on each type of job from that

particular department. This is group within group.

Example of Group within Group Clause:

To find the average monthly salary for each job type within department Then the query

will be:

SQL>SELECT DEPTNO, JOB, AVG (SAL) AS AVERAGE SALARY FROM EMP

GROUP BY DEPTNO, JOB;

(f) Having: It is similar to 'Where Clause', but it is used with group functions. It is

used to filter the data. 'Having Clause' can be used with 'Group function' and cannot be used with

'Where Clause'. It restricts the groups that we return on the basis of group functions. It is used to

specify which groups are to be displayed.

Syntax of Having Clause:

SQL> SELECT column_list FROM table_name

[HAVING Clause];

Example of 'Having Clause:

To find the department who has paid the total salary more than 8.00.6 to its employees.

Then the query will be:

SQL>SELECT DEPTNO, SUM (SAL) AS TOTAL SALARY FROM EMP GROUP

BY DEPTNO

HAVING SUM (SAL)>8000;

(g) Distinct Clause: The 'Distinct Clause' is used with 'Select Statement' to suppress

the duplicate values if any in a column.

Example of 'Distinct Clause':

Display all the different jobs available in the table 'EMP'. Then the query will be:

SQL>SELECT DISTINCT JOB FROM EMP;

Result:

JOB

3. Update

President

Clerk

Analyst

Salesman

Manager

• Update command is used when there is a need to modify the data in a table.

• It is used to update existing records in a table.

• It updates single record or multiple records in a table.

Syntax of Update Command:

SQL> UPDATE table_name

SET column1 = value, column2 = value2,

WHERE some_column = some_value;

Examples of Update Command:

1. To give everybody a commission of Rs. 100 in the table 'EMP'. Then the query will be:

SQL>UPDATE EMP

SET COMM = 100;

2. Update the Manager's salary to 8000 of department number 10 in the table 'EMP'. Then

the query will be:

SQL>UPDATE EMP

SET SAL = 8000

WHERE JOB = 'Manager' AND DEPTNO = 10;

4. Delete

• It deletes one or more records from a table and sends it to recycle.

• It doesn't release the memory occupied by the records of the table. Data can be recovered.

• If any subset is defined with condition, then specific records or rows, are deleted,

otherwise all records are deleted.

• Executing a delete command may cause triggers to rum which may cause deletion in

other tables.

• Example: Sometimes two tables are linked by the foreign key. If we delete rows in one

table, then we have to delete those rows from the second table to maintain the referential

integrity.

Syntax of Delete Command:

SQL> DELETE FROM table_name [where condition];

OR

SQL> DELETE from table_name;

Examples of Delete Command:

1. Delete all the records of 'Manager' from the table 'EMP'. Then the query will be:

SQL>DELETE FROM EMP

WHERE JOB = 'Manager';

2. Delete all the records from the table 'EMP'. Then the query will be:

SQL>DELETE FROM EMP;

7.6.3 DCL (Data Control Language)

• It is used to control access to data in a database. It also controls the security of the

database.

• To control data in a database, privileges are given to user to access the data without any

problem and with proper security.

• It basically provides security to database. Without privileges, no one can access the

database.

• A user can access the database according to the privileges given to him.

The following are the various DCL commands:

Fig. 10.5: Parts of DCL

(a) Grant: It is used to give the permission to the user for restricted access to the database. It

allows specified users to perform specified tasks.

(b) Revoke: It is used to cancel the previously granted or denied permissions to the users.

(c) Deny: It disallows the specified users from performing specified tasks.

7.6.4 TCL (Transaction Control Language)

• TCL is used to manage the changes made by DML (data manipulation language)

statements.

• These commands are used for revoking the transactions and to make the data commit to

the database.

• Basically, it is used to manage the different transactions occurring within a database.

• Each transaction is completely isolated from other active transactions.

• User can make changes in the particular transaction in database with the transaction

control language.

• At the end of the transaction, the database can make all the changes permanent in the

database or undoes them all.

• If any problem fails in the middle of a transaction, then the database rolls back the

transaction and restore the database into its former state.

• The following are the various TCL commands:

Fig. 10.6: Parts of TCL

(a) Commit

• Commit command is used to save work done. The changes made in the database by the

user are not visible to other users until they become permanent in the database.

• Commit command is used to permanent any changes made to the database during the

current transaction by the user.

• Commit command is used to save all the changes made to the database since the last

commit or rollback command.

Syntax of Commit Command:

SQL> COMMIT;

Example of Commit Command:

To delete the records of the employees permanently, belonging to the city 'Chd'.

SQL>DELETE FROM EMP

WHERE CITY = 'Chd';

SQL>COMMIT;

(b) Rollback

• It is used to restore the database to its original state since the last 'commit'.

• It is the inverse of the commit statement.

• It is used to undo the transactions that have not already been saved to the database.

• Oracle provides a facility to-roll back to the last committed state.

Example: We are performing the operations on the database and some problem occurs into

the computer system. Yet we have not performed the commit statement, and then rollback

command helps to come back to the last committed state.

Syntax of Rollback Command:

SQL> ROLLBACK;

(c) Savepoint

• Savepoint command is used to identify a point in a transaction from which we can later

rollback.

• The Savepoint statement defines a Savepoint within a transaction.

• It is a special mark inside a transaction that allows all commands that are executed after it

was established to be rolled back, restoring the transaction state to what it was at the

time of Savepoint.

• Changes made after a Savepoint can be undone at any time prior to the end of the

transaction.

• A transaction can have multiple savepoints.

Syntax of Savepoint Command:

SQL> SAVEPOINT<savepoint name>;

(d) Set Transaction

● Set transaction command has no effect on any subsequent transactions.

● It is used to set the characteristics of the current transaction.

● This command is helpful to determine whether the transaction is read/write or read only.

● If a transaction is read only, then the insert, update, delete and copy commands are

disallowed.

7.6.5 Embedded SQL

• Embedded SQL define how SQL statements can be embedded within general purpose

programming language like C, C++, Java.

• All the SQL statements DDL, DML and DCL can be grouped into one body. Embedded

SQL refers to the use of standard SQL commands embedded within a procedural

programming language.

• When the embedded statements of SQL are execute then all the statements in the body

will be executed automatically.

Some of the embedded SQL statements are:

(a) Define: Define cursor

(b) Open: Open cursor

(c) Execute: To execute the command or SQL prompt.

7.6.6 Integrity

• SQL DDL includes commands for integrity constraints so that the data store in the

database must satisfy the condition.

7.7 SQL OPERATORS

• SQL supports a wide variety of operators. These operators are extensively used in SQL

statements used by the user for the purpose of issuing a query to the database.

• The operators are mainly used in the Where clause, Having clause to filter the data to be

selected.

• An operator is a symbol which is used to manipulate the data items (operands).

Fig. 10.7: Types of Operators

• Operators are represented by keywords or by special characters.

On the basis-of operands, there are two types-of operators:

Unary Operator: An unary, operator operates on only one operand.

Format operator operand.

Binary Operator: A binary operator operates on two operands.

Format operand1 operator operand 2

The following are the various SQL operators:

Fig. 10.8: Types of SQL Operators

7.7.1 Arithmetic Operator

• An arithmetic operator is used to add, subtract, multiply and divide the numeric values in

an expression.

• It is used to perform the mathematical operations on one or more data items or operands

of numeric data type.

• It also provides results in numeric values.

Sr. No. Arithmetic Operator Description

1 + Used for addition in SQL

2 - Used for subtraction in SQL

3 / Used for division in SQL

4 * Used for multiplication in SQL

Examples of Arithmetic Operator:

1. Add

Add Rs.500 in the employee's salary whose EMPNO is 6258 from the relation 'EMP'.

Then the query will be:

SQL> SELECT SAL, SAL+500 FROM EMP

WHERE EMPNO = 6258;

Result:

SAL SAL + 500

900 1400

2. Subtract

Subtract the employee's commission from his salary whose EMPNO is 6388. Then the query will

be:

SQL> SELECT SAL, SAL-COMM FROM EMP

Result:

WHERE EMPNO = 6388;

SAL SAL-COMM

1500 1200

3. Multiply

Multiply the salary of employee by 100 whose EMPNO is 6258 from the relation 'EMP'.

Then the query will be:

SQL> SELECT SAL, SAL* 100 FROM EMP

WHERE EMPNO = 6258;

Result:

SAL SAL * 100

900 90000

7.7.2 Comparison Operator

• A comparison operator is used to compare the column data with specific values with the

other column data values.

• It is also used along with the Select Statement to filter data based on specific conditions.

Sr.
No.

Comparison

Operator

Description

1 = Equal to

2 != OR o Not equal to

3 < Less than

4 > Greater than

5 <= Less than or equal to

6 >= Greater than or equal to

7 LIKE Performs pattern matching from columns.

The LIKE operator is- used only with Char and match a

pattern.

% represents sequence of zero or more character.

8 IN To check a value within a set. It is used to compare a

column with more than one value.

9 BETWEEN To check value within a range. It is used to compare data

for a range of value.

10 ANY To check whether one or more rows in the result set of a

sub query meet the specified, condition

11 ALL To check whether all rows in the result set of a sub query

meet the specified condition.

12 EXISTS To check whether a sub query returns any result.

Example of Equal to (=) Operator:

Display the records of the employees, who live in city 'Chd', from the relation 'EMP'.

Then the query will be:

SQL> SELECT * FROM EMP

WHERE CITY = 'Chd';

Result:

ENAME DEPTNO JOB EMPNO SAL HIREDATE MGR CITY

Nidhi 20 Clerk 6258 900 9-5-83 6801 Chd

Siddharth 10 Manager 6671 2550 29-9-80 6728 Chd

Saira 20 Analyst 6801 3000 15-4-80 6455 Chd

Example of Not Equal to (!= OR <>) Operator:

Display the records of the employees, whose city is not equal to 'Chd', from the relation

'EMP'. Then the query will be:

SQL> SELECT * FROM EMP

WHERE CITY! = 'Chd';

Result:

ENAME DEPTN

O

JOB EMPN

O

SAL HIREDATE MG

R

CIT

Y

COM

M

Aastha 30 Salesma

n

6388 1500 1-12-89 6587 Delhi 300

Sacliin 30 Salesma

n

6410 1350 25-1-92 6587 Pta 500

Rohit 20 Manager l3455 2875 27-12-91 6728 Nba

Rahul 50 Salesma

n

6543 1350 28-5-87 6587 Nba_ 1400

Aditya 30 Manager 6587 2750 17-8-86 6728 Pta

Kunal 20 Analyst 6677 3000 842-82 6455 Delhi

Akhil 10 President 6728 5000 2-11-85 Delhi

Prathiba 30 Salesma

n

6733 1600 4-6-85 6587 Pta 0

Manmeet 20 Clerk 6765 1050 114-84 6677 Ldh

Navreet 30 Clerk 6800 950 25-3-84 6587 Pta

Amit 10 Clerk 6823 . 1400 25-8-85 6671 Ldh

11 rows selected

Example of Less than (<) Operator:

Display the name of the employees, whose salary is less than '1400', from the table

'EMP'. Then the query will be:

SQL> SELECT ENAME FROM EMP

WHERE SAL = 1400'

Result:

ENAME

Nidhi

Sachin

Rahul

Nanmeet

Naureet

Example of Greater than (>) Operator:

Display the name of the employees, whose salary is greater than '1400', from the table

'EMP'. Then the query will be:

SQL> SELECT ENAME FROM EMP

WHERE SAI>1400;

Result:

ENAME

Nidhi

Sachin

Rahul

Manmeet

Navreet

Amit

6 rows selected.

Example of Less than or equal to (<=) Operator:

Display the name of the employees, whose salary is less than or equal to '1400', from the

table 'EMP'. Then the query will be:

SQL> SELECT ENAME FROM EMP

WHERE SAL< =1400;

Result:

ENAME

Nidhi

Sachin

Rahul

Manmeet

Navreet

Amit

6 rows selected.

Example of Greater than (>=) Operator:

Display the name of the employees, whose salary is greater than or equal to '1400', the

table 'EMP'. Then the query will be:

SQL> SELECT ENAME FROM EMP

WHERE SAL< =1400;

Result:

ENAME

Aastha

Rohit

Aditya

Siddharth

Kunal

Akhil

Prathiba

Saira

Amit

9 rows selected.

Examples of LIKE Operator:

1. Display the employees whose name start with 'S' from the table 'EMP'. Then the query

will be:

SQL> SELECT ENAME FROM EMP

WHERE ENAME LIKE 'S%';

Result:

ENAME

Sachin

Siddharth

Saira

2. Display the employees, whose name ends with 'S', from the table 'EMP'. Then the query

will be:

SQL> SELECT ENAME FROM EMP

WHERE ENAME LIKE '%S';

Result:

NO ROW SELECTED.

• Display the employees, where 'S' is in the middle of the name, from the Table 'EMP'.

Then the query will be:

SQL> SELECT ENAME FROM EMP

Result:

WHERE ENAME LIKE '%S%';

ENAME

Aastha

Example of IN Operator:

Display the names of the employees, who are analyst and clerk, from the table 'EMP'.

Then the query will be:

SQL>SELECT ENAME FROM EMP

WHERE JOB IN ('Analyst', 'Clerk');

Result:

ENAME

Nidhi

Kunal

Manmeet

Navreet

Saira

Amit

6 rows selected.

Example of BETWEEN Operator:

Display the name and salary of all employees, whose salary is between 2000 and 3000,

from the table 'EMP'. Then the query will be:

SQL>SELECT ENAME, SAL FROM EMP

WHERE SAL BETWEEN 2000 AND 3000;

Result:

ENAME SAL

Rohit 2875

Aditya 2750

Siddharth 2550

Kunal 3000

Saira 3000

7.7.3 Logical Operator

• Logical operators compare two or more than two conditions at a time to determine

whether a row can be selected for the output.

• When retrieving data using a Select Statement, we use logical operators in the Where

Clause which allows us to combine more than one condition.

Sr.
No.

Logical Operator Description

1 AND For the row to be selected all the specified conditions must be

true.

2 OR For the row to be selected at least one of the specified

conditions must be true.

3 NOT For the row to be selected, the specified conditions must be

false.

● NOT is totally opposite of AND and OR operator. When we want to find those rows that

do not satisfy a condition, then we use the NOT operator.

1. Examples of AND Operator:

● To find the names of the clerks from the table "EMP" who are working in the department

number 20, then the query will be:

SQL> SELECT ENAME FROM EMP

WHERE NOB = 'CLERK' AND DEPTNO = 20;

Result:

ENAHE

Nidhi

Manmeet

● To find the Ename, Sal, Job from the table "EMP" where salary is greater than 1500 and

deptno is 30, then the query will be:

SQL> SELECT ENAME, SAL, JOB FROM EMP

WHERE SAL>1500 AND DEPTNO = 30;

Result:

ENAME SAL JOB

Rohit 2175/Manager

Aditya 2758 Manager

Prathiba 1600 Salesman

● To find all the information of the employee's from the table "EMP" whose job is manager

and deptno is 10, then the query will be:

SQL> SELECT * FROM EMP

WHERE JOB = 'Manager' AND DEPTNO = 10;

Result:

ENAME DEPTON JOB EMPNO SAL HIREDATE MGR CITY

Siddharth 10 Manager 6671 2550 29-9-80 6728 Chd

2. Examples of OR Operator:

• To find the names of the employees from the table "EMP", who are analysts and clerk,

then the query will be:

SQL> SELECT ENAME FROM EMP

WHERE JOB = -'Analyst' OR JOB = 'CIerk';

Result:

ENAME

Nidhi

Kunal

Navreet

Saira

Amit

6 rows selected.

• Display the Ename, Empno from the table "EMP", whose job is clerk or deptno is 10,

then the query will be:

SQL> SELECT ENAME, EMPNO FROM EMP

WHERE JOB = 'Clerk' .OR DEPTNO = 10;

Result:

ENAME EMPNO

Nidhi 6258

Siddharth 6671

Akhil 6728

Manmeet 6765

Navreet 6888

Amit 6823

6 rows selected.

3. NOT

• Display the names of the employees from the table "EMP", who are not clerks, then the

query will be:

SQL> SELECT ENAME FROM EMP

WHERE JOB <> 'Clerk';

OR

SQL> SELECT ENAME FROM EMP

WHERE JOB! = 'Clerk';

Result:

ENAME

Aastha

Sachin

Rohit

Rahul

Aditya

Siddharth

Kunal

Akhil

Prathiba

Saira

10 rows selected.

• Display the name and deptno of employees from the table "EMP", who are not belonging

to deptno 10 or 20, then the query will be:

SQL> SELECT ENAME, DEPTNO FROM EMP

WHERE NOT (DEPTNO = 10 OR DEPTNO = 20);

Result:

ENAME DEPTNO

Aastha 30

Sachin 30

Rohit 30

Rahul 30

Aditya 30

Prathiba 30

Navreet 30

7 rows selected.

7.7.4 Set Operator

• Set operators are used to combine the results from two or more Select statements.

• The result of each Select Statement can be treated as a SET. Set operators are applied on

these SETS to achieve the final result.

• Set operators follow some rules which are as follows:

• Number of columns should be in exact same order in all the queries.

• Number of columns should be same in all the queries.

• Data types of retrieved columns (selected statements) should be matched.

UNION ALL

SELECT Column List FROM Table2;

Example of Union All Operator:

Display all the jobs in department 10 and 20 from the table 'EMP'. Then the query will

be:

Result:

SQL> SELECT JOB FROM EMP

WHERE DEPTNO = 10

UNION ALL

SELECT JOB FROM EMP

WHERE DEPTNO = 20;

JOB

Manager

President

Clerk

Clerk

Analyst

Clerk

Analyst

7 rows selected.

NOTE: Union operator provides results with automatically removal of duplicate values

whereas Union All operator provides results without removal of any duplicate value.

3. Intersect

Intersect operator combine the two table expressions into one and return a result set

which consists of rows that appear in the results of both table expressions. It also removes all the

duplicate rows from the result set.

Syntax of Intersect Operator:-

SQL> SELECT Column List FROM Table 1

INTERSECT

SELECT Column List FROM Table2;

Example of Intersect Operator:

Display all the jobs common in department 10 and 20 from the table 'EMP'. Then the

query will be:

SQL> SELECT JOB FROM EMP

WHERE DEPTNO = 10

INTERSECT

SELECT JOB FROM EMP

WHERE DEPTNO = 20;

Syntax: ->

SQL><SELECT STATEMENT><SET OPERATOR>< SELECT STATEMENT >

<ORDER BY Clause>;

Sr.
No.

Set Operator Description

1 Union Returns all distinct rows selected by either query, excluding all

duplicate rows.

2 Union All Returns all rows selected by either query, including all duplicate rows.

3 Intersect Returns all distinct rows selected by both queries.

4 Minus Returns all distinct rows selected by the first query but not the second.

1. Union

It combines the results of two queries (same number of columns and compatible data

types) into a single table of all matching rows. Union automatically removes all the duplicate

values.

Syntax of Union Operator:

SQL> SELECT Column List FROM Table1

UNION

SELECT Column List FROM Table2;

Example of Union Operator:

• Display the different jobs in department 10 and 20 from the table 'EMP'. Then the query

will be:

SQL> SELECT JOB FROM EMP

WHERE DEPTNO = 10

UNION

SELECT JOB FROM EMP

WHERE DEPTNO = 20;

Result:

JOB

2. Union All

Analyst

Clerk

Manager

President

It combines the results of two queries (same number of columns and compatible data

types) into a single table of all matching rows. It includes (shows) all the duplicate values.

Syntax of Union All Operator:

SQL> SELECT Column List FROM Table1

Result:

JOB

Clerk

4. Minus

It compares each record in statement1 with a record in statement2. It returns the results

with the records in statement1 that are not in statement2.

Rows retrieved by the second query are subtracted from the rows retrieved by the first

query. Only those records are considered as a result which are present only in statement1 and not

in statement2.

Syntax of Minus Operator:-

SQL> SELECT Column List FROM Table1

MINUS

SELECT Column List FROM Table2;

Example of Minus Operator:

Display all the unique jobs in the department 10 from the table 'EMP'. Then the query

will be:

SQL> SELECT JOB FROM EMP

WHERE DEPTNO = 10

MINUS

SELECT JOB FROM EMP

Result:

WHERE DEPTNO = 20

MINUS

SELECT JOB FROM EMP

WHERE DEPTNO = 30;

JOB

President

7.7.5 Concatenation Operator

• Concatenation operator is used to combine the two or more data strings.

• The operands of the concatenation must be compatible strings.

• Character string cannot be concatenated with a binary string.

• Concat and vertical bars (..) both represent the concatenation operator.

Concatenation Operator Description

Piping Operator (...) It is used to combine two or more strings

Examples of Concatenation Operator:

• List the employee salary whose empno is 6728. Then the query will he:

SQL> Select 'My Salary is =' Sal as Salary

From EMP Where Empno = 6728.

Result:My Salary is 5000.

• List the employee name whose empno is 6728. Then the query will be:

SQL> Select 'My Name is =' Ename as Name

From EMP Where Empno = 6728.

Result:My Name is Akhil.

7.8 SQL FUNCTIONS

Fig. 10.9: SQL Functions

7.8.1 Single Row Functions

Single row functions operate on single rows only and returns one result per row. The

types of single row functions are as follows:

Fig. 10.10: Single Row Functions

1. Character Functions

• It is also known as text functions.

• It is used to manipulate text strings.

• It accepts character input only and returns either character or numeric values.

The following are the types of character functions:

(a) LOWER (string): It converts uppercase or mixed case character strings into lowercase

character strings.

Example: SQL>SELECT LOWER (JOB) FROM EMP;

Result:

LOWER(JOB)

clerk

salesman

salesman

manager

salesman

manager

manager

analyst

president

salesman

clerk

LOWER(JOB)

clerk

analyst

clerk

14 rows selected.

(b) UPPER (string): It converts lowercase or mixed case character strings into uppercase

character strings.

Example: SQL>SELECT UPPER (JOB) FROM EMP;

Result:

UPPER(JOB)

CLERK

SALESMAN

SALESMAN

MANAGER

SALESMAN

MANAGER

MANAGER

ANALVST

PRESIDENT

SALESMAN

CLERK

UPPER(JOB)

CLERK

ANALVST

CLERK

14 rows selected.

(c) CONCAT (string1, string2): It is equivalent to the concatenation operator. It returns

string1 concatenated with string2. It joins (combines) two string values together.

Example: SQL>SELECT CONCAT ('MONIKA', 'TATHAK') FROM DUAL;

Result: MONIKA PATHAK

(d) LENGTH (string): It is used to get the length of a string as a numeric value. Example:

SQL>SELECT LENGTH (Akhil) FROM DUAL;

Result: 5

(e) ASCII (string): It is used to return the decimal representation of the first byte of string in

the database character set.

Example: SQL> ASCII (Amit) FROM DUAL;

Result: 65

2. Number Functions

● It is used to perform operations on numbers.

● It accepts numeric input, only and returns numeric values.

The following are the types of numeric functions:

(a) ABS (n): It returns absolute value of numeric value.

Example: SQL>SELECT ABS (-29) FROM DUAL;

Result: 29

(b) CEIL (n): It returns the next smallest integer greater than or equal to parameter passed to

n.

Example: SQL>SELECT CEIL (29.8) FROM DUAL;

Result: 30

(c) FLOOR (n): It returns the largest integer value less than or equal to parameter passed to

n.

Example: SQL>SELECT FLOOR (29.8) FROM DUAL;

Result: 29

(d) MOD (m,n): It returns the remainder of m divided by n. It returns m if n is 0.

Example: SQL>SELECT MOD (16,3) FROM DUAL;

Result: 1

(e) SQRT (n): It returns the square root of n. The value of n cannot be negative.

Example: SQL>SELECT SQRT (25) ;FROM DUAL;

Result: 5

3. Date Functions

● Date functions operate on values of the Date datatype.

● It takes values of Date datatype as input and return values of Date datatype as output,

except the Months_Between function, which returns a number.

The following are the types of date functions:

(a) SYSDATE: It returns the current system date and time on our local database.

Example: SQL>SELECT SYSDATE FROM DUAL;

Result:

SYSDATE

18-JUN-15

(b) LAST_DAY: It returns the date of the last day of the month specified.

Example: SQL>SELECT SYSDATE LAST DAY (SYSDATE) FROM DUAL;

(c) CURRENT_DATE: It returns the current date in the Gregorian calendar for the session's

time zone.

Example: SQL>SELECT SYSDATE CURRENT DAY (SYSDATE) FROM DUAL;

(d) NEXT_DAY: It returns the date of next specified day of the week after the 'date'.

Example: SQL>SELECT SYSDATE NEXT DAY (SYSDATE) FROM DUAL;

(e) ADD_MONTHS: It adds or subtracts the months to or from a date.

Example: SQL>SELECT SYSDATE, ADD_MONTHS (SYSDATE, 4) FROM

DUAL;

Result:

SYSDATE ADD_MONTH

18-JUN-15 18-OCT-15

4. Conversion Functions

It converts the value from one form to another form.

The following are the types of conversion functions:

(a) Implicit Data Type Conversion: It occurs when the expression evaluator automatically

converts the data from one data type to another.

(b) Explicit Data Type Conversion: It occurs when we explicitly converts the data from

one data type to another.

5. Miscellaneous Functions

The following are the types of miscellaneous functions:

(a) GREATEST: It returns the greatest value in the list of expressions.

Example: SQL>SELECT GREATEST (2, 11, 25, 29) FROM DUAL;

Result: 29

(b) LEAST: It returns the smallest value in the list of expressions.

Example: SQL>SELECT LEAST (2, 11, 25, 29) FROM DUAL;

Result: 2

(c) USER: It returns the username of the current user logged on.

Example: SQL>SELECT USER FROM DUAL;

Result: SCOTT

7.8.2 Group/Aggregate Functions

• Aggregate functions are also known as Group functions or Summary functions.

• SQL supports the functions which can be used to select and compute the numeric, date

columns and characters of the relation.

• These functions operate on multiple rows (group of rows) and return only one value for a

group or table, therefore these functions are known as aggregate functions. By default,

all rows are treated as one group in a table.

The types of aggregate functions are as follows:

Fig. 10.11: Group/Aggregate Functions

STUD

Name Class Roll Number Marks Age

Akhil C12 11 95 16

Monika C12- 12 91 15

Aastha M12 13 95 14

Rohit E12 14 94 12

Rahul E12 15 93 13

Ankush C12 16 95 15

Radhika M12 17 92 14

1. Avg: The Avg (average) function returns the arithmetic mean of the value of a column in

a given relation. This function is applicable on numeric values.

Examples of Avg Function:->

• To find the average marks of the students from the table STUD, then the query will be:

SQL> SELECT AVG (Marks) FROM STUD;

Result: 93.51

● To find the average salary of the employees from the table EMR Then the query will be:

SQL> Select AVG (SAL) AS Average Salary FROM EMP;

Result:Average Salary

2091.07143

2. Count: The Count function returns the number of rows in a relation (table). This function

is used for numeric, character values and date. The Count function returns value only if it

satisfies the condition stated in the Where Clause.

Examples of Count Function:

● To find the number of students from the table 'STUD'. Then the query will be:

SQL> Select COUNT (*) FROM STUD;

Result: 7

● To find the total number of employees from the table EMP, Then the query will be:

SQL> SELECT %COUNT (*) AS TOTAL EMPLOYEE FROM EMP;

Result:TOTAL EMPLOYEE

14

3. Max: The Max function returns the maximum of the values of a column from the given

relation.

Examples of Max Function:

• To find the maximum marks from the table 'STUD'. Then the query will be:

SQL> MAX (Marks) FROM STUD;

Result: 95

• To find the maximum salary drawn by the employee from the table EMP. Then the query

will be:

SQL> MAX (SAL) AS Maximum Salary FROM EMP;

Result:Maximum Salary

5000

4. Min: The Min function returns the minimum of the values of a column from the given

relation.

Examples of Min Function:

• To find the minimum marks from the table STUD. Then the query will be:

SQL> MIN (Marks) FROM STUD;

Result: 91

• To find the minimum salary drawn by the employee from the table EMP. Then the query

will be:

SQL> MIN (SAL) AS Minimum Salary FROM EMP;

Result:Minimum Salary

900

5. Sum: The Sum function returns the sum of values (numeric type) of a column.

Example of Sum Function:

• To find the sum of marks from the table STUD. Then the query will be:

SQL> SELECT SUM (Marks) FROM STUD;

Result: 655

• To find the total salary given to the employees from the table BMP. Then the query will

be:

SQL> SELECT SUM (SAL) AS Total Salary FROM EMP;

Result:Total Salary

29275

7.9 JOINS

● Mostly we retrieve data from one table at a time. But what will we do if we need to

retrieve data from multiple tables.

● Oracle provides the facility to retrieve the data from multiple tables with the help of joins.

● Joins are used to combine columns from different tables.

● Joins allow us to retrieve the data from multiple users in a single query.

● Joins permits us to select data from more than one table in one SQL statement (query).

● A join is used to combine rows from multiple tables.

● Joins are used to relate information in different tables.

● The connection between tables is established through the Where Clause.

● Where Clause is known as join condition.

● The rows retrieved after joining the two tables based on a condition in which one table

act as a primary key and other act as a foreign key. Columns in both tables should be

matched.

Syntax of Join:

SQL> SELECT tablel.column, table2.column, tableN.column

FROM table1, table2, tableN.

WHERE tablel.column1 = table2. column2;

Fig. 10.12: Types of Join

7.9.2 Equi Join

● It is also known as Inner Join.

● When two tables are joined together using equality of values in one or more columns,

they make an equi join.

● Equi join is used when we need to compare each record in two joined tables and comes

with matching record.

● Table prefixes are utilized to prevent ambiguity.

● We use equi join (inner join) when we only want to return records where there is at least

one row in both tables that match the join condition.

● Equi join uses the equal sign as the comparison operator.

Example of Equi Join:

First Table is BMP

Second Table is DEPT.

EMP

ENAME DEPTN

O

JOB EMPN

O

SAL HIREDAT

E

MG

R

CIT

Y

COM

M

Nidhi 20 Clerk 6258 900 9-5-83 6801 Chd

Aastha 30 Salesman 6388 1500 1-12-89 6587 Delhi 300

Sachin 30 Salesman 6410 1350 25-1-92 6587 Pta 500

Rohit 20 Manager 6455 2875 27-12-91 6728 Nba

Rahul 30 Salesman 6543 1350 28-5-87 6587 Nba 1400

Aditya 30 Manager 6587 2750 17-8-86 672S Pta

Siddhart

h

10 Manager 6671 2550 29-9-80 6728 Chd

Kunal 20 Analyst 6677 3000 8-12-82 6455 Delhi

Akhil 10 President 6728 5000 2-11-85 Delhi

Prathiba 30 Salesman 6733 1600 4-6-85 6587 Pta 0

Manmeet 20 Clerk 6765 1050 11-1-84 6677 Ldh

Navreet 30 Clerk 6800 950 25-3-84 6587 Pta

Saira 20 Analyst 6801 3000 15-4-80 6455 Chd

Amit 10 Clerk 6823 1400 25-8-85 6671 Ldh

DEPT

DEPTNO DNAME LOG

10 Sales London

20 Operation Mumbai

30 Research Paris

40 Accounting New York

Then the query will be:

SQL> SELECT EMPNO, ENAME, EMP.DEPTNO, DNAME FROM EMP, DEPT

WHERE EMP.DEPTNO = DEPT.DEPTNO;

Result:

Explanation of Equi Join:

For Equi Join, both the table names should be mentioned.

Column name should be specified with the table name to avoid confusion.

Deptno of BMP table is joined with the deptno of DEPT table because Deptno exists in

both the tables.

7.9.2 Cross Join

● It is also known as cartesian product or cartesian join.

● It returns the number of rows equal to the product of all rows in all rows in all the tables

being joined.

● It provides results in mXn rows.

● It is used when we want to join every row of a table to every row of itself.

Example of Cross Join:

SQL>SELECT EMPNO, ENAME, DNAME, LOC FROM EMP, DEPT;

Result:

Explanation:

Table BMP has 14 rows.

Table DEPT has 4 rows.

Then, total number of rows = mXn

=14X4

=> Total number of rows =56 rows

7.9.3 Outer Join

● Outer join has symbol (+).

● It is used if there is any value in one table that do not have corresponding value in other

table. Such rows are forcefully selected by it.

● It is used on one side of the join condition only and the corresponding columns for that

row will have NULL value.

Example of Outer Join:

SQL>SELECT EMPNO, ENAME, E-MP.DEPTNO, DNAME, LOC FROM

EMP,DEPT

WHERE EMP.DEPTNQ (+) = DEPT.DEPTNO;

Result:

EMPN

O

ENAM

E

DEPTN

O

DNAME LOC

6258 Nidhi 20 Operation Mumbai

6388 Aastha 30 Research Paris

6410 Sachin 30 Research Paris

6455 Rohit 30 Research Paris

6543 Rahul 30 Research Paris

6587 Aditya 30 Research Paris

6671 Siddhar

th

10 Sale Paris

6677 Kunal 20 Research Paris

6728 Akhil 10 Sale London

6733 Prathib

a

30 Research Mumbai

6765 Manme

et

20 Operation London

6800 Navreet 30 Research Paris

6801 Saira 20 Operation Mumbai

6823 Amit 10 Sale London

7 .9.4 Self Join

● Self join is used when a table is joined/compared to itself.

● A table is joined to itself means each row of the table is combined with itself and with

every row of the table.

● If we want to use self join, then we need to open the two copies of same table by using

table aliases

● Table name aliases are defined in the From Clause of the query.

● Table alias is used to avoid confusion among two same tables.

Example of Self Join:

SQL>SELECT WORKER.ENAME AS ENAME, MANAGER.ENAME AS

MANAGER

FROM EMP WORKER, EMP MANGER

WHERE WORKER.MGR = MANAGER.EMPNO;

7.10 ROLL UP OPERATION

● It is just an extension of the Group of Clause.

● It appears only with Group by Clause.

● It is useful in generating reports (result set) that contain subtotals and totals.

● It is used by the report writers to extract statistics and summary information from result

sets.

● It calculates a grand total. First, it calculates the standard aggregate values specified in

the Group by Clause. Then, it creates progressively higher level subtotals, moving from

right to left through the list of grouping columns. Finally, it creates a grand total.

● It is much like the Group by Clause except it gives subtotal and grand totals at the end.

Syntax of Roll up Operation:

SQL> SELECT.............

FROM..............

WHERE.............

GROUP BY ROLLUP [column1, column2,];

Example of Roll up Operation:

SQL>SELECT DEFTNO, JOB, COUNT (*), SUM (SAL) FROM EMP GROUP BY

ROLLUP (DEPTNO/JOB);

Result:

12 rows selected.

7.11 CUBE OPERATION

● It is a simple extension of Group by Clause with select statement.

● It takes aggregation one step further than Roll Up.

● The cube operation generate result set (subtotals) contains a cross tabulation of all the

possible combinations of the grouping columns.

● Therefore, the result of a cube operation will contain all subtotals produced by an

equivalent Roll Up operation and some additional subtotals.

● It applied to all aggregate functions. It produces subtotals and a grand total.

Syntax of Cube Operation:

SQL> SELECT.............

FROM..............

WHERE.............

GROUP BY CUBE [column1, column2,];

Example of Cube Operation:

SQL>SELECT DEPTNO, JOB, COUNT (*), SUM (SAL) FROM EMP GROUP BY

CUBE (DEPTNO, JOB);

Result:

Difference between Roll Up Operation and Cube Operation

Sr.
No.

Rollup Operation Cube Operation

1 Roll up operation produces only a fraction

of possible subtotal combinations.

Cube operation produces subtotals of

possible combinations and a grand total.

2 Roll up operation provides us only the sets

in the order listed which shows aggregates

for a hierarchy of values in the selected

columns

Cube operation provides us the subtotals of

possible combinations of columns which

show aggregates for all combinations of

values in the selected columns.

7.12 NESTED QUERY

● Nested query means query within another query.

● First, we evaluate the inner query (sub query) within the Where Clause.

● Then, the result of inner query (sub query) is constituted in the condition of outer query.

● The result of inner query will pass to the outer query for the preparation of final result.

● In a nested query, there can be any number of sub queries.

● Sub query is used with Where or Having Clause. Sub query cannot be used with the

Order by Clause.

● A query is called a sub query and complete select statement is called a nested query.

Syntax of Nested Query:

SQL> SELECT <column,.>

FROM<table>

WHERE expression operator

(SELECT <column,. . >

FROM <Table>

WHERE <condition>);

Examples of Nested Query:

List the employee names belonging to the department of Akhil from table "EMP", then

the query will be:

SQL> SELECT ENAME FROM EMP

WHERE DEPTNO = (SELECT DEPTNO FROM EMP :

WHERE ENAME = ‘Akhil’);

Result:ENAME

Siddharth

Akhil

Amit

Explanation:

We divide this nested query into two parts because we do not know the department to

which Akhil belongs.

In the first part: SELECT DEPTNO FROM EMP

WHERE ENAME ='Akhil';

In the inner query, we have to find out the department of Akhil.

In the second part: SELECT ENAME FROM EMP

WHERE DEPTNO = 10;

In the outer query, we use the department number (result of inner query) to find out the

other employee names of that department.

7.13 SUBQUERY

Subquery is a inner query within another main query (Outer query).

Special operators in subquery: There are some special operators used in subqueries to

perform specific tasks which are as follows:

Fig. 10.13: Special Operators in Subquery

(a) Exists

It is used to check the existence of values.

It provides results in the form of true/false.

If the subquery provides any output, then the result will be true.

If the subquery does not provide any output, then the result will be false.

Example of Exists:

Display the employee details if and only if more than 8 employees working in the

department number 20 from the table 'BMP'. Then the query will be:

SQL>SELECT * FROM EMP

WHERE DEPTNO = 20 AND EXISTS (SELECT COUNT (*) FROM EMP)

WHERE DEPTNO = 20

GROUP BY DEPTNO

HAVING COUNT (*) >20;

(b) Any

It is used to compares the lowest value from the set.

Any operator returns value TRUE if the comparison value matches any of the values in

the list.

Examples of Any:

Display the employees whose salary is greater than any 'Manager' and he is not

'Manager'. Then the query will be:

SQL>SELECT ENAME, JOB, SAL FROM EMP

WHERE SAL>ANY (SELECT SAL FROM EMP WHERE JOB = 'Manager')

AND JOB<> 'Manager';

Result: NO ROW SELECTED

(c) Some

The Some operator and Any operator are equivalent.

Some operator works same like Any operator i.e. it compares the lowest value from the

set.

Example of Some:

Display the employee names along with their salaries from the table 'EMP', whose salary

is greater than the lowest salary of an employee belonging to department number '10'. Then the

query will be:

SQL>SELECT ENAME, SAL FROM EMP

WHERE SAL>SOME (SELECT SAL FROM EMP WHERE DEPTNO = 10);

Result:

(d) All

It is used to compare the highest value from the set.

All operator returns value true If the comparison value matches with all the. values in the

list.

Example:

Display the employees with salary less than those whose job is 'Manager'. Then the query

will be:

SQL>SELECT ENAME, JOB, SAL FROM EMP

WHERE SAL < ALL (SELECT SAL FROM EMP WHERE JOB = 'Manager')

AND JOB<> 'Manager’;

Result:

7.14 VIEW

• For security reasons, it is desired that a user sees only a part of a table or group of tables.

• On the other hand, a user may like to view some of the information from many tables.

• Hence, each user views the database from his own angle without seeing the entire

database.

• With the help of view, we can see a selective portion of data from one or more tables.

• A view is a virtual table. Views do not contain data their own and always tasks the data

from base table.

• A view is a specific representation of data from one or more tables.

• It is stored as a select statement in the database.

• The tables on which a view is based are known as base tables.

• We can query, insert into, delete from and update from views in almost the same way as

tables.

• If we make changes in the tables, then changes automatically reflects in the views.

For example: We wish that a 'Manager' should have access only to employee's name, job and

department in the table 'BMP'. It means 'Manager' should not have any access to the salaries or

other details of the employees. It is possible only with the help of view.

Syntax of View:

SQL> CREATE VIEW view_name

As

SELECT column_list

FROM table_name [WHERE Condition];

7.14.1 Creating a View

• We must have .the create view privilege to create a view in our schema.

• We must have to create any view system privilege to create a view in another user's

schema.

• The owner of the view must have been explicitly granted privileges to access all objects

referenced in the view definition.

• View's functionality depends on the privileges of the view owner. It means if the owner

of the view has only the select privilege, then he/she can only select row, cannot insert,

update or delete rows.

Example of Creating View:

Create a view for the 'Akhil' from the table 'EMP'. He can access only employee's name,

job and department. He cannot access the salary of all the employees.

SQL>CREATE VIEW Akhil

AS SELECT ENAME, JOB AND DEPTNO FROM EMP;

7.14.2 Modifying a View

• We use the 'OR REPLACE' option to modify the view.

• If view already exists, then it will replace with new definition or a new view will be

created.

• The view will become invalid whenever the base table.is altered.

Example of Modifying a View:

SQL>CREATE OR REPLACE VIEW Akhil Garg

AS SELECT * FROM EMP;

View Created.

7.14.3 Inline View

• Inline view is a subquery with an alias (correlation name) that we can use like a view

inside a SQL statement.

• It appears in the 'From Clause', of the select statement and enclosed in parenthesis.

Example of Inline View:

We want to-select first 3 employee hired by the company.

SQL>SELECT ENAME<HIREDATE FROM

(SELECT ENAME<HIREDATE FROM EMP ORDER BY HIREDATE)

WHERE ROWNUM<=3;

7.14.4 Materialized View

• Materialized view is a standard object which is used to summarize, replicate, precompute

and distribute data.

• It is a database object that contains the results of a query.

• It provides indirect access to table data by storing the results of a query in a separate

schema object.

• A materialized view can query tables, views and other materialized views.

• Materialized views are local copies, of data located remotely or are used to create

summary tables based on aggregations of a table's data.

• Materialized views, which store data based on remote tables, are also known as

snapshots.

• Materialized views can be used to replicate the data at distributed sites.

• Materialized views are suitable in various computing environments such as data

warehousing, decision support, distributed computing or mobile, computing.

• It is used in data warehouses so as to increase the speed of queries on a large database.

• Materialized view improves query performance by precalculating expensive join and

aggregation operations.

• It is used in mobile computing to download a subset of data from central servers to

mobile clients.

7.14.5 Dropping a View

• We can drop any view contained in the schema.

• The 'Drop View' statement is used to drop a view from a database.

• The 'Drop Any View' privilege is used to drop a view in another's schema.

Syntax of Dropping View:

SQL>DROP VIEW view_name;

7.14.6 Advantages of View

• The database becomes secured because user is allowed a limited view of database.

• View is used to restrict access to the database or to hide data complexity.

• The user queries become simplified.

• The user gets consisted view of database.

• We can rename the table columns by giving the different names to columns while

creating views.

• Views take very little space to store because database contains only definition of view not

all the present data.

• It solves the redundancy (duplication) problem.

• As the data is taken from base table, accurate and up to date information is provided by

the view.

• Different views can be created on the same base table for different users.

7.15 DISADVANTAGES OF SQL

• SQL statements are passed to Oracle engine/server one at a time which generates the

problem of network traffic. Every time when a SQL statement is executed, a call is

made to Oracle engine/server.

• SQL cannot use the PL/SQL statements.

• SQL does not provide any procedural capabilities i.e. conditional checking, branching,

looping etc.

• If any error occurs in the statement, SQL cannot fails to handle it, and then Oracle engine

displays its own error message.

• PL/SQL is required to overcome the limitations of SQL. We will discuss PL/SQL in

chapter 11.

7. 16 KEY POINTS

7.16.1 SQLAlias

• SQL Alias is used for columns and tables.

• SQL Alias is created to make the columns and tables more readable.

• It is used for columns when column names are big or not readable.

• It is used for tables when there are more than one tables involved in a query.

(a) SQL Alias for Columns: Display the names of all the employees from the relation 'EMP'

through column alias. Then the query will be:

SQL> Select ENAME AS NAME From EMP;

In the above query, ENAME is given an alias 'NAME'. In the result, column name looks

as 'NAME' instead of 'ENAME'.

Result:

SQL> SELECT ENAME AS NAME FROM EMP;

NAME

Nidhi

Aastha

Sachin

Rohit

Rahul

Aditya

Siddharth

Kunal

Akhil

Prathiba

Manmeet

NAME

Navreet

Saira

Amit

14 rows selected.

(b) SQL Alias for Tables: Display the names of all the employees from the relation 'EMP'

through table alias. Then the query will be:

SQL> Select E.ENAME From EMP E;

In the above query, alias ‗E‘ is defined in the relation ‗EMP'.

Result:

ENAME

Nidhi

Aastha

Sachin

Rohit

Rahul

Aditya

Siddharth

Kunal

Akhil

Prathiba

Manmeet

ENAME

7.16.2 Null Values in SQL

Navreet

Saira

Amit

14 rows selected.

• Null value represents an inapplicable or unknown value.

• It is not 0 or a blank space.

• For example: Display the names of the employees who are not eligible for the

commission. Then the query will be:

SQL>SELECT ENAME FROM EMP

WHERE COMM IS NULL;

Result:

7.16.3 Difference between Delete and Truncate Command

 Delete Truncate

1 Delete command delete the table

and send it to recycle bin.

Truncate command removes data from memory.

2 Delete command is slow as

compared to truncate.

Truncate command is faster as compared to delete

command.

3 Data can be recovered. Data can't be recovered.

4 DML DDL

5 In delete command, we may or

may not give condition like

where.

In truncate command, we do not give where

condition.

6 Doesn't release the memory

occupied by records of table.

Releases the memory occupied by records of

table.

Questions

1. What is SQL? Write its characteristics in detail.

2. Define DCL and explain different SQL commands come under DCL.

3. Define DML and explain different command with suitable example,

4. What is the use of DDL language? Explain with suitable example

5. Query to display the different designation in department no. 20 and 30 of from table

‗EMP‘.

6. Query to find the average of particular column.

7. Query to display the employees no. and name in department no. 10 and 3 0 from table

'EMP'

8. Query to select department that has total salary paid for its employees more than. 8000.

UNIT 8 : PL/SQL

COURSE: DBMS

8.1 INTRODUCTION

8.2 ADVANTAGES OF PL/QL

8.3 DIFFERENCE BETWEEN SQL AND PL/SQL

8.4 BLOCK STRUCTURE OF PL/SQL

8.5 ARCHITECTURE OF PL/SQL

8.6 ELEMENTS OF PL/SQL

8.7 DATA TYPES OF PL/SQL

8.8 PL/SQL VARIABLES

8.9 PL/SQL CONSTANTS

8.10 CONTROL STRUCTURES OF PL/SQL

8.10.1 Conditional Statements

8.10.2 Iterative Statements

8.10.3 Sequential Statements

8.11 CURSORS IN PL/SQL

8.11.1 TYPES OF CURSOR

8.12 EXCEPTION HANDLING IN PL/SQL

8.12.1 Guidelines to Avoid and Handle the Exceptions

8.12.2 Types of Exception

8.13 EXCEPTION PROPAGATION

8.14 SUBPROGRAMS

8.14.1 Advantages of Subprograms

8.14.2 Block Structure of PL/SQL Subprograms

8.14.3 Types of Subprograms

8.14.4 Procedures

8.14.5 Functions

8.15 STORED PACKAGES

8.16 TRIGGERS

8.16.1 Guidelines for Designing Triggers

8.16.2 States of Triggers

8.16.3 Parts of Trigger

8.16.4 Types of Trigger

8.16.5 Creating and Dropping A Trigger

8.16.6 Advantages of Triggers

8.1 INTRODUCTION

1. PL/SQL stands for procedural language/structured query language.

2. It is an extension of SQL.

3. It was developed by Oracle Corporation to enhance the capabilities of SQL.

4. It is a combination of SQL and procedural features of standard programming

languages.

5. The aim of PL/SQL is to removethe restrictions of SQL language.

6. It is not a case sensitive language. It means, we can use both the lower case and

uppercase letters.

7. It is a powerful transaction processing language which extends the capabilities of

SQL by adding control statements, procedures and functions.

8. It supports all the data manipulation operations and all data types of SQL.

9. It is used to overcome the limitations of SQL. It. is used to write triggers and

stored procedures.

10. In short, PL/SQL is a database oriented programming language which extends

Oracle SQL with procedural capabilities.

8.2 ADVANTAGES OF PL/QL

1. Support for SQL: It allows us touseall the SQL commands, as wellas all SQL

functions,operators and data types sothat we can manipulate Oracle's data flexibly

and safely.

2. Better Performance: Without PL/SQL, Oracle server processes SQL statements

one ata time. Every time a SQL statement is issued, it must be sent over the

network whichcreates more traffic. But with PL/SQL, an entire block can be sent

to Oracle server at atimereduces network traffic and improves the performance.

3. Error Handling: PL/SQL handles errors during the execution of its program.

When, anerror (exception) is found, it takes some specifications depending upon

the type of theerror.

4. BlockStructure:It is a block structures language. It consists of blocks of code.

Each program written as a block. Blocks can be nested. Each block performs a

specific task.Blocks can be reused.

5. Portability: Programs written in PL/SQL can run anywhere. These programs can

be used in another new environment without any change. It means programs

written in PL/SQL are portable to any platform (any operating system) on which

Oracle runs. PL/SQL programs can be reused in different environments.

6. Higher Productivity: PL/SQL increases productivity by adding functionality to

nonprocedural tools such as forms and reports. We can use an entire PL/SQL

block in an Oracle from trigger without using multiple trigger steps(macros).

Fig. 8.1: Advantages of PL/SQL

7. Integration:It integrates well with SQL*PLUS and other application development

products of Oracle Corporation.

8. Security: We can prevent client applications from modifying the sensitive data by

using PL/SQL stored procedures. It enables the user to partition the application

logic from client to server and protect the data by giving proper access power to

different users.

9. Modularity: PL/SQL divides an application/process into manageable and well

defined modules such as procedures and functions. These modules are known as

subprograms.

10. Reusability: PL/SQLprovides reusability because a single stored procedure can be

used by different applications. If at any point of time procedure changes, then it

will not affect the application program.

11. Procedural Language Capability: PL/SQLnot only supports SQL data

manipulation commands but also allow control structures such as conditional

statements (if else statements) and loops like (for loops). Control structures

controls the procedural flow of the program and are very important PL/SQL

extension to SQL.

8.3 DIFFERENCE BETWEEN SQL AND PL/SQL

Sr.
No.

SQL PL/SQL

1 SQL stands for Structured

Query Language.

PL/SQL stands for Procedural Language/Structured

Query Language.

2 SQL is used to manage

database operations. It does

not have any procedural

capability.

PL/SQL is the procedural language extension to the

non-procedural language SQL. It is a com6ination of

SQL and procedural features of standard

programming languages.

3 Only one statement is

executed at a time.

The block of code is executed at a time.

4 SQL statements can be

embedded within a PL/SQL

program.

PL/SQL code cannot be embedded within a SQL

statement.

5 It tell the database what to do

and not how to do it.

It tells database how to do things.

6 There is no provision of error

handling in SQL.

There is a provision of error handling in PL/SQL

7 It is used to code queries,

data definition and

manipulation statements.

It is used to code program blocks,

functions,procedures and packages.

8.4 BLOCK STRUCTURE OF PL/SQL

1. Each program of PL/SQL consists of SQL and PL/SQL statements. It forms a

PL/SQL block.

2. In PL/SQL, programs can be divided into logical blocks.

3. Comments can be used to document the code.

4. PL/SQL blocks can be nested within the other PL/SQL blocks.

5. PL/SQL block consists of three sections which are as follows:

(a) Declarative Section (Optional)

(b) Executable Section (Mandatory)

(c) Exception/Error Handling Section (Optional)

6. The structure of PL/SQL block is as follows:

DECLARE

<declarations>

BEGIN

<executafole statements>

EXCEPTION

<exception handlers>

END;

7. The description of these sections of PL/SQL block structure is as follows:

(a) Declarative Sections:This section is optional. This section starts with the

reserved keyword 'DECLARE'. This section is used to declare any place

holders like variables, constants, records and cursors, which are used to

manipulate data in the executable form.

(b) Executable Section: This section is mandatory. This section starts with the

reserved keyword 'BEGIN' and ends with 'END'. This is the section where

the program logic is written toperform any task.

(c) Exception Section: This section is optional. This section starts with the

reserved keyword 'EXCEPTION'.

8.5 ARCHITECTURE OF PL/SQL

1. PL/SQL is not an independent product.

2. It is a run time technology.

3. It is like an engine which installed in an Oracle Server or in application

development tools such as Oracle Form Builder, Oracle Reports Builders etc.

4. PL/SQL engine executes PL/SQL blocks and subprograms.

5. PL/SQL resides in two environments:

(a) Oracle Server

(b) Oracle Tools

Fig, 8.2: Architecture of PL/SQL

6. These two environments (Oracle Server and Oracle Tools) are independent of each

other.

7. ThePL/SQL engine executes-the procedural part of the statements and sends the

SQL statements to the 'SQL Statement Executor' in the Oracle server.

8. PL/SQL code is stored in the;Oracle Server.

8.6 ELEMENTS OF PL/SQL

The elements of object are used to represent real world objects, and operations.

The PL/SQL has the following set of elements:

Fig. 8.3: Elements of PL/SQL

I. Character Set

1. PL/SQL programs are written as lines of text using a specific set of characters.

2. PL/SQL is not a case sensitive. In PL/SQL, programs can be written in both lower

case and upper case.

3. The PL/SQL character set includes:

• The upper case letters (A.....Z) and lower case letters (a...z).

• Numerals (0...9)

• Tabs, spaces and carriage returns

• Symbols: (),+i-,*,/,<>,!,:,{}, Q,& etc.

II. Reserved Words

1. Reserved words have special, syntactic meaning to PL/SQL and cannot be

redefined.

2. If we will try to redefine a reserved word, we will get a compilation error.

3. Reserved words can be written in both upper case and lower case. Generally,

reservedwords are written in upper case to promote readability,

4. For example: The words 'BEGIN' and CEND9 are reserved words, which bracket

the executable part of a block or subprogram.

III. Delimiters

1. A delimiter is a simple or compound symbol that has a special meaning to

PL/SQL.

2. Simple symbols consist of one character whereas compound symbols consist of

two characters.

3. The list of simple symbols and compound symbols is as follows:

List of Simple Symbols

Simple Symbol Meaning

+ Addition Operator

- Subtraction/Negation Operator

/ Division Operator

* Multiplication Operator

; Statement Terminator

= Relational Operator

< Relational Operator

> Relational Operator

% Attribute Indicator

\ Character String Delimiter

(Expression or List Delimiter

) Expression or List Delimiter

. Component Selector

: Host Variable Indicator

' Item Separator

" Quoted Identifier Delimiter

@ Remote Access Indicator

List of Compound Symbols

Compound Symbol Meaning

:= Assignment Operator

=> Association Operator

|| Concatenation Operator

** Exponentiation Operator

<> Relational Operator

!= Relational Operator

~= Relational Operator

^ = Relational Operator

.. Range Operator

<< Label Delimiter (Begin)

>> Label Delimiter (End)

/* Multi-line comment delimiter (begin)

*/ Multi-line comment delimiter (end)

IV. Identifiers

1. Identifiers are used to name PL/SQL program items and units, which include

constants, variables, exceptions, cursors, cursor variables, subprograms and

packages.

2. Identifiers follow the following rules:

• Identifiers must start will an alphabetic character.

• An Identifier consists of a letter optionally followed by more letters, numerals,

underscores dollar signs and number signs. Other characters such as hyphens,

slashes and spaces are not allowed.

• Identifiers can have maximum of 30 characters.

• Identifier name and column name cannot be same in a table used in the block.

• Identifiers are not case sensitive.

V. Literals

A literal is an explicit numeric, character, string or Boolean value which cannot be

represented by an identifier.

(a) Numeric Literal: Numeric integers are represented either by simple value

(129, 2.11) or by scientific integer (2E5 which means 2* 105). Numeric literals

are of following two types:

• An Integer Literal: It is an optionally signed, whole number without a

decimal point. For example: 129,211, +112, -29.

• A Real Literal:Itis an optionally signed whole or fractional number with a

decimal point. For example: 129,2.11,+1.12,-2.9.

(b) Character Literal: It is an individual character enclosed by single quotes

(‗...‗). PL/SQL is case sensitive within the character literal. For example: It

considers the literals ‗M‘ and ‗m‘ to be different.

(c) String Literal: A string literal is a sequence of zero or more characters

enclosed by the single quotes. All the string literals except the null string

have data types CHAR.

(d) Boolean Literal: Boolean literals are values not strings. Boolean literals

are predefined values(True, False) and non-value (Null) which stands for a

missing value (inapplicable or unknown value).

VI. Comments

1. We use comments to describe the purpose and use of each code segment.

2. It promotes the readability and aids understanding.

3. PL/SQL supports two comment styles:

(a) Single Line Comment: Single line comment begins with a double hyphen

(—) and extends to the end of line.

(b) Multi Line Comment:Multi line comment begins with a slash-asterisk (/*)

and ends with an asterisk-slash (*/) and can span multiple lines.

VII. Lexical Units

1. A line of PL/SQL text contains the group of characters known as lexical unit.

2. It can be classified as: Delimiters, Identifiers, Literals and Comments.

8.7 DATA TYPES OF PL/SQL

1. A data type specifies the storage format, constraints and valid range of values.

2. In PL/SQL, data types are divided into the following four categories:

Fig. 8.4: Data Types of PL/SQL

(a) Scalar

• A scalar data type represents a single value.

• It has no internal components.

• For example: Number, Char, Boolean, Date.

(b) Composite

• A composite data type represents a collection of components.

• It is one that has components within it.

• It has internal components which can be manipulated individually.

• For example: Table, Record

(c) Reference

• A variable declared as reference variable can point to different storage locations

over the life of a program.

• A reference data type represents a pointer that points to another item.

• For example: Ref Cursor, Ref object type.

(d) LOB

• LOB stands for large object.

• LOB data type includes BFILE, BLOB, CLOB and NCLOB.

• With LOB data type, we can store blocks of unstructured data up to 4 GB in size.

• Unstructured data means text, images, video clips and sounds.

• LOB data type allows efficient, random and piece-wise access to the data.

8.8 PL/SQL VARIABLES

1. Variables are placeholders that store the data values that can change during the

execution of PL/SQL block.

2. We must first declare the variable and then use it

3. Variables can have SQL data type(such as Number, Date, Char, etc.) and PL/SQL

datatype (Boolean, Binary etc.)

4. Forward references are not allowed in variables.

5. We can assign values to the variables directly from the database columns by using

a 'Select Statement'.

6. Syntax:

Variable _Nanie Data Type [NOT NULL: = Value];

7. Variables are of two types:

(a) Local Variable: Local variables are declared in an inner block and cannot

be referenced by outside the block.

(b) Global Variable: Global variables are declared in both an inner block and

an outer block. It can also b6 referenced by itself.

8.9 PL/SQL CONSTANTS

1. In PL/SQL, the value of a constant remains unchanged throughout the program.

2. We can declare a constant and use it instead of actual value.

3. It is a user .defined literal value.

4. We must assign a value to a constant at the time we declare it

5. Syntax:

Constant_Name CONSTANT Data Type: = Value;

8.10 CONTROL STRUCTURES OF PL/SQL

1. Control structures are the most important PL/SQL extension to SQL.

2. It allows us to control, the behavior of the block.

3. PL/SQL supports programming language features such as conditional statements,

iterative statements and sequential statements.

4. The various control structures are as follows:

(i) Conditional Statement

(ii) Iterative Statement

(iii) Sequential Statement

Fig.8.5: Control Structures of PL/SQL

8.10.1 Conditional Statements

It allows PL/SQL to perform the actions selectively based on conditions. The

following are the forms of conditional statements:

(a) If Then Statement: It is the simplest form of If statement. It associates a

condition with a sequence of statements enclosed by the keywords 'Then' and 'End If'.

Syntax:

IF condition THEN

Sequence of Statements;

END IF;

(b) If Then Else Statement:It adds the keyword 'Else' followed by the

alternative sequence of statements.

Syntax:

IF condition THEN

Statement 1;

ELSE

Statement 2;

END IF;

(c) If Then Elself Statement: It adds the keyword 'Elself' to introduce the

additional conditions.

Syntax:

IF condition1 THEN

Sequence of Statements1;

ELSEIF condition 2 THEN

Sequence of Statements2;

ELSE

Sequence of Statements3;

END IF;

8.10.2 Iterative Statements

These are also known as Loop Control Structures. These statements are used when

we want to repeat the execution of one or more statements for specified number of times.

The following are the forms of iterative control statements:

(a) Simple Loop Statement: It is also known as basic or infinite loop. It is

used when a set of statements is to be executed at least once before the loop terminates.

An 'Exit Condition' must be specified in the loop, which exits the process from the loop.

If 'Exit Condition' is not specified in the loop, the loop will get into an infinite number of

iterations (loops).

Syntax:

LOOP

Statements;

EXIT [WHEN CONDITION];

LOOP;

(b) While Loop Statement: It is used to repeat a sequence of statements until

the controlling condition is 'True'. It evaluates the condition at the start of each iteration

and terminates when the condition is'False'.

Syntax:

WHILE <condition>

LOOP Statements;

END LOOP;

(c) For Loop Statement: It is used to execute a set of statements for a

predefined number of times. Between the given start and end integer values. Iteration

occurs. The counter is incremented by 1 and loop exits when the counter reaches the

value of the end integer.

Syntax:

FOR counter IN <Start Integer Value> ...<End Integer Value>

LOOP Statements;

END LOOP;

8.10.3 Sequential Statements

In PL/SQL all the blocks execute in top-down sequential process (begin statement

to end statement). We use sequential statements to change the sequence of execution of

statements. The following are the forms of sequential statements:

(a) GOTO Statement:It immediately transfers program control

unconditionally to a named statement label. The statement label should be unique.

Syntax:

GOTO <<LabeI_name>>;

(b) NULL Statement:Itdoes nothing and passes control to the next statement.

Syntax:

NULL;

8.11 CURSORS IN PL/SQL

1. Oracle uses work area to execute SQL statements and store processing

information.

2. In PL/SQL, when we want to execute a SQL statement, Oracle server just opens

the memory area (private SQL work area) to execute that command. That private

SQL work area is known as cursor.

3. A cursor is a memory area (private SQL work area) that Oracle uses to execute

SQL statements.

4. It is a temporary workarea created in a system memory when a SQL statement is

executed.

5. This memory area (private SQL work area) is also used to store the data retrieved

from the database.

6. The set of rows the cursor holds is known as Active Set.

7. A cursor can hold-more than one row, but can process only one row at a time.

8.11.1 TYPES OF CURSOR

Fig, 1L6: Types of Cursor

I. Implicit Cursor

1. Implicit cursors are declared by PL/SQL implicitly.

2. Implicit cursor is created to execute the DML (data manipulation language)

statements such as Select, Insert, Update and Delete.

3. When DML operations are performed with implicit cursor, it automatically

reserves somememory area for the execution of operations.

4. After the completion of DML operations, it releases the memory area.

5. Attributes of Implicit Cursor:

Oracle provides some attributes (%Found, %Not found, %'Isopen, %Rowcount) to

check the status of DML operations. These attributes are known as implicit cursor

attributes.

Sr.
No.

Attribute Retpra Value Example

1 %FOUND • The return value is 'TRUE', if the

DML statements like Insert, Update

and Delete affect at least one row and if

Select.... Into statement return at least

SQL%FOUND

 one row.

• The return value is 'FALSE', if the

DML statements like Insert, Update

and Delete do not affect any row

and if Select.... Into statement does

not return any row.

2 %NOTFOUND • The return value is 'TRUE', if the DML

statements like Insert, Update and

Delete do not affect any row and

if Select.... Into statement does not

return any row.

• The return value is 'TALSE', if the

DML statements like Insert, Update

and Delete affect at least one row and if

Select.... Into statement return at least

one row.

SQL%NOTFOUND

3 %ISOPEN The return value is always 'False' because

Oracle automatically closes an implicit cursor

after the successful execution of SQL

operations.

SQL%ISOPEN

4 %ROWCOUNT It returns (counts) the number of rows affected

by the DML operations (Select, Insert, Update

and Delete).

SQL%ROWCOUNT

6. Disadvantages of Implicit Cursor:

• Implicit cursors are less efficient and slightly slow as compared to explicit cursors.

• Implicit cursors provide less programming control. Unlike explicit cursors,

implicit cursors cannot be opened and fetched automatically.

• Implicit cursors are more vulnerable to data errors because it has less

programming control.

II. Explicit Cursor

1. Explicit cursors are declared explicitly by the user. Explicit cursors also are known

as User Defined Cursors.

2. An explicit cursor is defined in the declaration sectionof the PL/SQL block.

3. Explicit cursor is declared in the declarative part of PL/SQL block to take control

over query operations.

4. Explicit cursor can store multiple records, but can process one record (current

row) at a time.

5. After processing the rows in the explicit cursor, we deallocate the memory

occupied by the cursor using CLOSE statement.

6. Attribute of Implicit Cursor:

Orcle provides some attributes (%Found, %Not found, %Isopen, %Rowcount) to

avoid errors which accessing cursors through OPEN, FETCH and CLOSE statements.

These attributes are known as implicit cursor attributes.

Sr.
No.

Attribute Return Value Example

1 %FQUND • The return value is 'TRUE',

iffetch statement returns at

least one row.

• The return value is 'FALSE',

iffetch statement does not

return any row.

Cursor_name%FOUND

2 %NOTFOUND • The return value is 'TRUE',

if not statement does not

return any row.

• The return value is 'FALSE',

if fetch statement returns at

Cursor_name%NOTFOUND

 least one row.

3 %ISOPEN • TRUE,if the cursor is

already open in the program.

• FALSE, if the cursor is not

opened in the program.

Cursor_name%ROWCOUNT

4 %ROWCOUNT It returns (counts) the number of

rowsfetchedby the fetchstatement.

If no row is returned, the PL/SQL

statement an error.

Cursor_name%ROWCOUNT

8.12 EXCEPTION HANDLING IN PL/SQL

1. Exception is basically an error.

2. Exceptions are identifiers in PL/SQL to terminate its main body of actions.

3. When an exception is raised, then Oracle searches for an appropriate 'exception

handler'in the exception section.

4. Exception handler is used to handle the exceptions and to perform actions before

the block terminates.

5. Exception handling part is used to specify the statements to be executed when an

exception occurs.

6. When an error/exception arises during program execution, then the normal

execution stops and the control transfers to the exception handling part of the

PL/SQL block or subprogram.

7. Only one exception can be raised in the block. After the error is handled, the

control does not return to the execution section.

8. An exception cannot be declared twice in the same block.

9. Exceptions declared in a block are considered as local to that block and global to

its sub blocks.

10. An enclosing block cannot access exceptions declared in its sub block.

11. The PL/SQL exception message consists of three parts:

• Type of Exception

• An Error Code

• A Message

12. Syntax:

DECLARE

Declaration Section

BEGIN

Execution Section

EXCEPTION

When Ex_Name1Then

Error Handling Statements

When Ex_Name2 Then

Error Handling Statements

When Others Then .

Error Handling Statements

END;

8.12.1 Guidelines to Avoid and Handle the Exceptions

The following are some guidelines to avoid and handle the exception:

• When there is any possibility of occurring an error, then add error checking code

topredict an error.

• When there is any possibility of occurring an error, then use exception handler

tohandle it.

• Test the code with different combinations of bad data to check its potential.

• Learn the names and causes of possible errors so that we can easily find and

handle them.

8.12.2 Types of Exception

The exceptions are of following two types:

(a) Predefined Exceptions

• It is also known as Internal Exceptions.

• These are automatically raised by the Oracle team

• We can handle them directly within our program without declaring them.

• The following table defines some predefined exceptions:

Sr.
No.

Exception Name Oracle Error

Number

Reason

1 CURSOR_ALREADY_OPEN ORA-06511 When we open a cursor that is

already open.

2 INVALID CURSOR ORA-01001 When we perform an invalid

operation on a cursor that in not

opened.

3 LOGIN_DENIED ORA-01017 When we want to login Oracle with

wrong username and password.

4 INVALID_NUMBER ORA-01722 Conversion from character to

number denied.

5 NO_DATA_FOUND ORA-Q14Q3 When a Select...Into clause does

not return any row from a table,

6 ZERO_DIVIDE ORA-01476 When we attempt to divide a

number by zero.

(b) User-defined Exceptions

• User defined exceptions are declared and defined by the user.

• These are explicitly declared in the declaration section.

• These are raised explicitly by raise statements,unlike predefined exceptions that

are raised implicitly.

8.13 EXCEPTION PROPAGATION

When an exception is raised in the executable section of PL/SQL block, then it

will handle in the following manner.

1. If an exception is handled in the current block, then the control passes to

the enclosing block.

2. If an exception is not handled in the current block, then exception

propagates.

• Propagates means circulates. We just circulate an exception until it

handles.

• It means exception is sent to enclosing blocks from inside to outside

until a handler is found or no more blocks to search,

• If no handler is found for exception, then an exception is sent to the

host environment.

8.14 SUBPROGRAMS

1. In PL/SQL, programs can be stored in the database as stored programs. Such

stored programs are known as Subprograms.

2. Subprograms can be invoked whenever required.

3. We can declare and define a subprogram within either a PL/SQL block or

anothersubprogram.

4. The main function of subprogram is to break the program into smaller and

manageable parts because smaller programs are easier to maintain and debug as

compared to large program.

5. These smaller and manageable parts are known as modules and this process is

known as Modularization.

6. Subprograms provide easy maintenance because code is located at one place and

we can easy modify it in this single location.

8.14.2 Advantages of Subprograms

• Modularity: Subprogram breaks the program into smaller and manageable parts which

are easier to maintain and debug.

• Extensibility: It provides the facility to add functionality. It allows creatingnew

program modules without affecting the old ones.

• Reusability: Any number of applications can use and execute the subprograms. A

subprogram can be used by various number of applications is known as reusability.

• Better Performance: Subprogram can reduce the number of calls from application to

Oracle, Reducing calls automatically increase the performance.

• Security: Subprogram helps to maintain the database security. It can restrict the users

to perform specific tasks with security privileges.

• Abstraction: Subprograms aid abstraction as all the internal and compilation details

are hidden from the user.

• Memory Allocation: Subprograms require less memory because it loads only a single

copy of subprogram into memory for multiple users.

8.14.2 Block Structure of PL/SQL Subprograms

PL/SQL Subprograms consists of three sections which are as follows:

(a)Declarative Section

(b) Executable Section

(c)Exception/Error Handling Section

(i) Declarative Section: It contains the declarations of types, cursors,

constants, variables,exceptions and nested subprograms.

(ii) Executable Section: It contains statements that assign values, control

execution andmanipulate the data.

(iii) Exception/Error Handling Section: It contains exception handlers which

deal with exceptions (errors) raised during execution.

8.14.3 Types of Subprograms

The subprograms are of following two types:

(a) Procedures

(b) Functions

Fig. 11.7:Types of Subprograms

8.14.4 Procedures

1. We use procedure to perform an action.

2. It is a subprogram that performs specific task.

3. It may or may not return a value.

4. It has declaration section, an executable section and exception handling section.

5. It accepts parameters of type IN, OUT and IN OUT.

6. Syntax:

CREATE [OR REPLACE] PROCEDURE Procedure_Name

[{Parameter 1 [Mode 1] Datatype1, Parameter 2 [Mode 2] Datatype2,…}]

IS I AS

[Local Declaration]

BEGIN

PL/SQLExecutable Statements

[EXCEPTION

Exception Handler]

END [PROCEDURE NAME];

7. The following are the two types of procedures:

(a) Local Procedures

• Local procedure is defined in the declaration section of PL/SQL block.

• Its scope is limited to the parent block from where it belongs.

• It cannot be defined outside the block from where it created.

• It can be called anywhere in the module section area.

(b) Stored Procedures

• It performs one or more specific tasks.

• It displays an error message if any error occurs.

8.14.5 Functions

1. The difference between a procedure and a function is that a function must return a

value but a procedure may or may not return a value.

2. We use function to compute a value.

3. Function has a return clause.

4. Like procedure, a function has declaration section, an executable section and

exception handling section.

5. Syntax:\

CREATE [OR REPLACE] FUNCTIONFunction_Name

[{Parameter1 [Mode 1] Datatype1, Parameter 2 [Mode 2]Datatype1,. }]

IS I AS

[Local Declaration]

BEGIN

PL/SQL Executable Statements

[EXCEPTION

Exception Handler]

END [FUNCTION NAME];

6. The following are the two types of functions:

(a) Local Functions: It is defined in the declaration section of PL/SQL block.

It cannotbe called by any block of PL/SQL outside the inner block.

(b) Stored Functions: It is also known as user defined function. It is set of

PL/SQLstatements we can call by name.

8.15 STORED PACKAGES

1. A stored packageor package is the collection of PL/SQL elements.

2. It is a database object which groups logically,related PL/SQL objects such as

cursors,exceptions, subprograms,procedures, functions, variables etc. into a single

container.

3. It stores PL/SQL objects which perform similar tasks into a single container.

4. It is like a library which stored once in Oracle database and used by many

applications.

5. The stored packages are of following two parts:

(a) Package Specification

(b) Package Body

(a) Package Specification

• In short form, package specification is known as 'Spep'.

• It holds public declarations, which are visible to the application.

• The scope of these declarations is local to the database schema andglobal to the

package.

• It is required when we create a new package.

• We use the 'Create Package Statement' to create a new package or package

specification.

• Syntax:

PACKAGE Package_Name

IS

[Declaration of Variables and Types]

[Headers of Cursors]

[Headers of Procedures and Functions]

END [Package Name];

(b) Package Body

• It holds the implementation details and private declarations.

• It contains the code that implements the package specification

• It fully defines the cursors and subprograms declared in the package specification.

• We use the 'Create Package Body Statement' to create a package body.

• Syntax:

PACKAGE BODY Package_Name

IS

[Declaration of Variables and Types]

[Header and Select Statement of Cursors]

[BEGIN

Executable Statements]

[EXCEPTION

Exception Handlers]s

END [Package Name];

6. 'Drop Package Command' is used to drop a package. It drops the specification and

body of the package.

Syntax:

DROP PACKAGE <Package_Name>;

8.16 TRIGGERS

1. A trigger is a PL/SQL block structure which is fired when DML statements

(Select, Insert,Update, Delete) execute on a database table.

2. It is stored in the database and executed automatically when specific event (user

actions orsystem actions) occurs in the database.

3. It is a PL/SQL program unit which associates with specific database table.

4. Triggers are stored as text and compiled at execution time.

5. It does not include much code in them but it call out previously stored procedures

or packages.

6. A database trigger includes SQL and PL/SQL statements to executes a unit and

invokeother stored procedures.

7. It can be defined on tables and on views.

8. It is used to improve the performance of Oracle in order to provide a more

convenientdatabase.

9. Trigger cannot perform commit or rollback operations.

8.16.1 Guidelines for Designing Triggers

1. Triggers can be used only when it is necessary. The excessive use of triggers can

result in complex interdependencies which may be difficult to maintain in large

applications.

2. Triggers guarantee that when a specific operation is performed, related actions are

performed.

3. Limit the size of triggers.

4. If the logic for the trigger is very lengthy, create stored subprograms, put the code

into stored subprograms and invoke them in the trigger body.

5. Do not create recursive triggers.

6. Do not define triggers that duplicate features already built into the Oracle

database.

7. Use database triggers only for centralized, global operations that must fire for the

triggering statements, regardless of which user or database application issues the

statement.

8.16.2 States of Triggers

A trigger can be in either of two states:

I. Enabled State

1. An enabled trigger executes its trigger body if a triggering statement is entered and

the trigger restriction (if any) evaluates to True.

2. By default, a trigger is created in enabled state.

3. To enable all triggers defined for a specific table, use the 'Alter Table Statement'

with 'Enable Clause' and 'All Triggers Option'.

For example: To enable all the triggers defined for the table 'Student', the

statement will be:

SQL>ALTER TABLE STUDENT ENABLE ALL TRIGGERS;

4. To enable a disable trigger, use the 'Alter Table Statement' with 'Enable Clause'.

For example: To enable the disabled trigger named 'Student', the statement will

be:

SQL>ALTER TRIGGER STUDENT ENABLE;

II. Disabled State

1. A disabled trigger does not execute its trigger body, even it a triggering statement

is entered and the trigger restriction (if any) evaluates to True.

2. To create a trigger in disabled state, we use the disable clause in the create trigger

statement.

3. To disable all triggers defined for a specific table, use the 'Alter Table Statement'

with 'Disable Clause' and 'All Triggers Option'.

For example: To disable all the triggers defined for the table 'Student', the

statement will be:

SQL>ALTER TABLE STUDENT ENABLE ALL TRIGGERS;

4. To disable a trigger, use the 'Alter Table Statement' with 'Disable Clause'.

For example: To disabled the trigger named 'Student', the statement will be:

SQL>ALTER TRIGGER STUDENT DISABLE;

8.16.3 Parts of Trigger

A trigger has the following three parts:

I. Triggering Event or Statement

II. Trigger Restriction

III. Trigger Action

When any of the events occur, the trigger fires automatically and PL/SQL block

performs the action. The trigger action is a procedure thatcontains the code to be

executed when the trigger fires.

I. Triggering Event or Statement

1. It is the SQL statement that causes a trigger to be fired.

2. It can specify multiple SQL statement.

3. It can be an Insert, Update or Delete statement on a table.

II. Trigger Restriction

1. It must specify a Boolean expression that must be 'True' for the trigger to

fire.

2. Its function is to control the execution of a trigger conditionally.

3. The trigger action is not run (executed) if the trigger restriction evaluates to

'False' or 'Unknown'.

III. Trigger Action

1. It is the procedure that contains the code to be executed when the trigger

fires.

2. Trigger Action executes the PL/SQL block when the triggering statement is

issued and trigger restriction evaluatesto'True'.

8.16.4 Types of Trigger

The different types of triggers are as follows:

Fig. 11.8: Types of Triggers

I. Row Triggers

1. A row trigger is fired each time the table is affected by the triggering

statement. A row trigger fires once onbehalf of the triggering statement.

2. If a triggering statement affects no rows; a row trigger is notrun.

3. Row triggers are useful if trigger action depends on number of rows

affected.

II. Statement Triggers

A statement trigger is fired once on behalf of the triggering statement, regardless

of the number of rows in the table that the triggering statement affects, even no rows are

affected. It is default type of trigger.

III. Before Triggers

1. Before triggers run the trigger action before the triggering statement is run.

2. These triggers are used to check the validity of data before the action is

performed.

IV. After Triggers

1. After triggers run the trigger action after the triggering statement is run.

2. These triggers are used when we want the triggering statement to complete

before executing the trigger action.

3. Instead of Triggers

(i) Instead of trigger provide a transparent way of modifying views that cannot

be modifieddirectly through DML statement.

(ii) With the help of this trigger, Oracle fires the trigger instead of executing

the triggeringstatement.

8.16.5 Creating and Dropping A Trigger

Creating a Trigger

1. We use the 'Create Trigger Statement' to create a trigger.

2. By default, a trigger is created in enabled state.

3. If we want to create a trigger in disabled state, thenwe use the 'Disable Clause' of

the 'Create Trigger Statement'.

4. Syntax:

CREATE [OR REPLACE] TRIGGER Trigger_Name

BEFORE I AFTER I INSTEAD OF

INSERT [OR] I UPDATE [OR] I DELETE [OF Column_Name]

ONTable_Name

[REFERENCING OLD AS Old, NEW AS New]]

[FOR EACH ROW [WHEN CONDITION]]

BEGIN

———SQL STATEMENTS

END;

Dropping a Trigger

1. We can delete the trigger with the help of 'Drop Command'.

2. If we want to delete the trigger'Monika9
5 then the statement will be:

SQL>DROP TRIGGER MONIKA;

8.16.7 Advantages of Triggers

• It maintains the replicate tables.

• It prevents the invalid transactions.

• It implements complex security authorizations.

• It implements complex business rules which cannot be implemented by using

integrity constraints.

• It automatically generates derived columns.

• It automatically performs an action when another concerned action takes place.

Questions

1. What is the difference between SQL and PL/SQL? Explain.

2. Discuss the block structure, of PL/SQL block.

3. Explain the elements of PL/SQL in detail.

4. Discuss the control structures of PL/SQL in detail.

5. Discuss the architecture of PL/SQL block.

6. Explain the following:

(a) PL/SQL Variables.

(b) PL/SQL Constants.

(c) Data types of PL/SQL.

7. What is exception? Discuss the usages of pre-defined and user-defined exceptions

in PL/SQL.

8. What is cursor? Discuss the role of implicit and explicit cursor.

9. How is exception handling performed in PL/SQL?

10. What is subprogram? Explain the types and block structure of PL/SQL

subprogram in detail.

11. What are stored packages?

12. What is trigger? Explain the various types of triggers in Oracle.

