
 
 

 
 
 
 
 
 
 
 
 
 
 

The Motto of the University 
(SEWA) 

SKILL ENHANCEMENT     EMPLOYABILITY       WISDOM  ACCESSIBILITY 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Bachelor of Computer Applications (BCA) 

Course Name: Object Oriented Programming 
Course Code: BCA-4-03T  

 
 
 

ADDRESS: C/28, THE LOWER MALL, PATIALA-147001 
WEBSITE: www.psou.ac.in 

SE
L

F
-I

N
ST

R
U

C
T

IO
N

A
L

 S
T

U
D

Y
 M

A
T

E
R

IA
L

 F
O

R
 J

G
N

D
 P

SO
U

, A
L

L
 C

O
P

Y
R

IG
H

T
S 

W
IT

H
 J

G
N

D
 P

SO
U

, P
A

T
IA

L
A

 
 

 

JAGAT GURU NANAK DEV 
PUNJAB STATE OPEN UNIVERSITY, PATIALA 

(Established by Act No. 19 of 2019 of the Legislature of State of Punjab) 
 



    JAGAT GURU NANAK DEV 
     PUNJAB STATE OPEN UNIVERSITY PATIALA 
        (Established by Act No.19 of 2019 of Legislature of the State of Punjab) 

 
 
 
 
 

 
PROGRAMME COORDINATOR : 
Dr. Monika Pathak 
Assistant Professor, School of Sciences and Emerging Technologies  
Jagat Guru Nanak Dev Punjab State Open University, Patiala 
 
PROGRAMME CO-COORDINATOR : 
Dr. Gaurav Dhiman 
Assistant Professor, School of Sciences and Emerging Technologies  
Jagat Guru Nanak Dev Punjab State Open University, Patiala 
 
COURSE COORDINATOR : 
Dr. Karan Sukhija  
Assistant Professor, School of Sciences and Emerging Technologies  
JGND PSOU, Patiala 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



     JAGAT GURU NANAK DEV 
      PUNJAB STATE OPEN UNIVERSITY PATIALA 
         (Established by Act No.19 of 2019 of Legislature of the State of Punjab) 

 

PREFACE 

 Jagat Guru Nanak Dev Punjab State Open University, Patiala was established in 

Decembas 2019 by Act 19 of the Legislature of State of Punjab. It is the first and only Open 

Universit of the State, entrusted with the responsibility of making higher education accessible 

to all especially to those sections of society who do not have the means, time or opportunity 

to pursue regular education. 

 In keeping with the nature of an Open University, this University provides a flexible 

education system to suit every need. The time given to complete a programme is double the 

duration of a regular mode programme. Well-designed study material has been prepared in 

consultation with experts in their respective fields. 

 The University offers programmes which have been designed to provide relevant, 

skill-based and employability-enhancing education. The study material provided in this 

booklet is self instructional, with self-assessment exercises, and recommendations for further 

readings. The syllabus has been divided in sections, and provided as units for simplification. 

 The Learner Support Centres/Study Centres are located in the Government and 

Government aided colleges of Punjab, to enable students to make use of reading facilities, 

and for curriculum-based counselling and practicals. We, at the University, welcome you to 

be a part of this institution of knowledge. 

 

Prof. G. S. Batra, 
 Dean Academic Affairs 

 
 
 
 
 
 
 
 
 
 
 
 



BCA-4-03T: Object Oriented Programming  
    

         Total Marks: 100 
                                                                                 External Marks: 70      

Internal Marks:  30    
Credits: 4                    

Pass Percentage:40%       
 

INSTRUCTIONS FOR THE PAPER SETTER/EXAMINER  

1. The syllabus prescribed should be strictly adhered to.  
2. The question paper will consist of three sections: A, B, and C. Sections A and B will 

have four questions from the respective sections of the syllabus and will carry 10 
marks each. The candidates will attempt two questions from each section.  

3. Section C will have fifteen short answer questions covering the entire syllabus. Each 
question will carry 3 marks. Candidates will attempt any ten questions from this 
section. 

4. The examiner shall give a clear instruction to the candidates to attempt questions only 
at one place and only once. Second or subsequent attempts, unless the earlier ones 
have been crossed out, shall not be evaluated. 

5. The duration of each paper will be three hours. 
  

INSTRUCTIONS FOR THE CANDIDATES 
Candidates are required to attempt any two questions each from the sections A and B of the 
question paper and any ten short questions from Section C.  They have to attempt questions 
only at one place and only once. Second or subsequent attempts, unless the earlier ones have 
been crossed out, shall not be evaluated. 

 
Course: Object Oriented Programming 
Course Code: BCA-4-03T 
Course Outcomes (COs) 
After the completion of this course, the students will be able to: 
CO1 Develop understanding of writing object-oriented programs that combine functions 

and data. 
CO2 Gain a thorough understanding of the core principles of OOP, including 

encapsulation, inheritance, and polymorphism. 
CO3 Learn how to apply OOP concepts to solve programming problems, design software 

systems, and develop reusable code. 
CO4 Understand how to create classes and objects in a programming language that 

supports OOP 
CO5 Learn how to use inheritance to create hierarchies of classes and reuse code 

efficiently. 
 
 
 
 



Detailed Contents: 
Module  Module Name  Module Contents  

Section-A 
Module I Introduction to OOP Introduction to OOP: 

 Basic concepts (objects, classes, 
inheritance, polymorphism, 
encapsulation) 

 Advantages of OOP over procedural 
programming 

Classes and Objects: 
 Declaring classes 
 Creating objects 
 Access specifiers (public, private, 

protected) 
 Constructors and destructors 
 Static members 

Module II Inheritance and 
Polymorphism 

Inheritance: 
 Base and derived classes 
 Types of inheritance (single, multiple, 

multilevel, hierarchical) 
 Access control in inheritance 

Polymorphism: 
 Function overloading 
 Operator overloading 
 Virtual functions and runtime 

polymorphism 
 Abstract classes and pure virtual 

functions 
Section-B 

Module III Encapsulation and 
Interfaces and Abstract 
Classes 

Encapsulation: 
 Data hiding 
 Accessor and mutator methods 
 Benefits of encapsulation 

Interfaces and Abstract Classes: 
 Declaring interfaces 
 Implementing interfaces 
 Abstract classes and methods 

Module IV Exception Handling and 
File Handling 

Exception Handling: 
 Handling exceptions using try-catch 

blocks 
 Throwing exceptions 
 Custom exceptions 

File Handling: 
 Reading from and writing to files 
 File streams (File Input Stream, File 

Output Stream, etc.) 
 
 
 



Reference Books: 
 

 Herbert Schildt, ―The Complete Reference C++‖, Tata McGraw-Hill. 

 Deiteland Deitel, ―C++ How to Program‖, Pearson Education. 

 Robert Lafore, ―Object Oriented Programming in C++‖, Galgotia Publications. 

 Bjarne Strautrup, ―The C++ Programming Language‖, Addition-Wesley 

Publication Co. 

 Stanley B. Lippman, Josee Lajoie, ―C++ Primer‖, Pearson Education. 

 E. Balagurusamy, ―Object Oriented Programming with C++‖, Tata McGraw-Hill 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Section A 

Module I 
 
 

Introduction to OOP: 
OOP stands for Object-Oriented Programming. Object-Oriented Programming & System 

(OOPS) concepts in Java helps reduce code complexity and enables the reusability of code. 

Programmers feel like working with real-life entities or objects. Object-oriented 

programming is a programming paradigm that brings together data and methods in a single 

entity called object. This promotes greater understanding as well as flexibility and 

maintenance of code over a long period of time. The basic concepts about oops in java are 

given below: 

Basic Concepts of oops: 

Objects & Classes: 
Objects are the basic unit of OOPS representing real-life entities. They are invoked with the 

help of methods. These methods are declared within a class. Usually, a new keyword is used 

to create an object of a class in Java. Class is a predefined or user-defined template from 

which objects are created. It represents properties/methods that are common to all objects of 

the same class. It has several features, such as access modifiers, class names, interfaces, and 

class bodies. 

Abstraction 
Abstraction means showing only the relevant details to the end-user and hiding the irrelevant 

features that serve as a distraction. For example, during an ATM operation, we only answer a 

series of questions to process the transaction without any knowledge about what happens in 

the background between the bank and the ATM. 

Example Program of Abstraction in Java 
abstract class Bike 
{ 

Bike() 
  { 
    System.out.println("The Street Bob. "); 
  } 
   abstract void drive(); 
  void weight() 
  { 
    System.out.println("Light on its feet with a hefty : 630 lbs."); 
  } 
}  
class HarleyDavidson extends Bike 



{ 
void drive() 
{ 

   System.out.println("Old-school yet relevant."); 
  } 
 } 
public class Abstraction  
{  
  public static void main (String args[]) 

{ 
Bike obj = new HarleyDavidson(); 

     obj.drive(); 
     obj. weight(); 
   } 
 } 
 
Output: 

The Street Bob. 
Old-school yet relevant. 
Light on its feet with a hefty: 630 lbs. 

3. Encapsulation 
Encapsulation is a means of binding data variables and methods together in a class. Only 

objects of the class can then be allowed to access these entities. This is known as data hiding 

and helps in the insulation of data. 

Example Program of Encapsulation in Java 
class Encapsulate  
{  
    private String Name;  
    private int Height;  
    private int Weight;   
    public int getHeight()   
    {  
      return Height;  
    }  
    public String getName()   
    {  
      return Name;  
    }  
    public int getWeight()   
    {  
       return Weight;  
    }  
    
    public void setWeight( int newWeight)  
    {  
      Weight = newWeight;  
    }  
   public void setName(String newName)  



    {  
      Name = newName;  
    }  
    public void setHeight( int newHeight)   
    {  
      Height = newHeight;  
    }  
}  
public class TestEncapsulation  
{      
    public static void main (String[] args)   
    {  
        Encapsulate obj = new Encapsulate ();   
        obj.setName("Abi");  
        obj.setWeight(70);  
        obj.setHeight(178);  
        System.out.println("My name: " + obj.getName());  
        System.out.println("My height: " + obj.getWeight());  
        System.out.println("My weight " + obj.getHeight()); 
    }  
}  
Output: 

My name: Abi 
My height: 70 
My weight: 178 

4. Inheritance – Single, Multilevel, Hierarchical, and Multiple 
Inheritance is the process by which one class inherits the functions and properties of another 

class. The main function of inheritance is the reusability of code. Each subclass only has to 

define its features. The rest of the features can be derived directly from the parent class. 

Single Inheritance – Refers to a parent-child relationship where a child class extends the 

parent class features. Class Y extends Class X. 

Multilevel Inheritance – Refers to a parent-child relationship where a child class extends 

another child‘s class. Class Y extends Class X. Class Z extends Class Y. 

Hierarchical Inheritance – This refers to a parent-child relationship where several child 

classes extend one class. Class Y extends Class X, and Class Z extends Class X. 

Multiple Inheritance – Refers to a parent-child relationship where one child class is 

extending from two or more parent classes. JAVA does not support this inheritance. 

Example Program of Inheritance in Java 
class Animal  
{ 

void habit() 
  { 
    System.out.println("I am nocturnal!! "); 
  } 
} 



class Mammal extends Animal  
{ 

void nature() 
  { 

System.out.println("I hang upside down!! "); 
  } 
} 
class Bat extends Mammal  
{ 
  void hobby() 
  { 
    System.out.println("I fly !! "); 
  } 
} 
public class Inheritance  
{ 
  public static void main(String args[]) 
  { 
    Bat b = new Bat(); 
    b.habit(); 
    b.nature(); 
    b.hobby(); 
  } 
} 
 
Output: 

I am nocturnal!!  
I hang upside down!!  
I fly !! 

5. Polymorphism – Static and Dynamic 
It is an object-oriented approach that allows the developer to assign and perform several 

actions using a single function. For example, ―+‖ can be used for addition as well as string 

concatenation. Static Polymorphism is based on Method Overloading, and Dynamic 

Polymorphism is based on Method Overriding. 

Example Program of Static Polymorphism with Method Overloading 
Method Overloading 
class CubeArea  
{ 
  double area(int x) 
  { 
    return 6 * x * x; 
  } 
} 
class SphereArea  
{ 
  double area(int x) 
{ 



    return 4 * 3.14 * x * x; 
  } 
} 
class CylinderArea  
{ 
  double area(int x, int y) 
  { 
    return x * y; 
} 
} 
public class Overloading 
{ 
  public static void main(String []args) 
  { 
   CubeArea ca = new CubeArea(); 
    SphereArea sa = new SphereArea(); 
    CylinderArea cia = new CylinderArea(); 
     System.out.println("Surface area of cube = "+ ca.area(1)); 
    System.out.println("Surface area of sphere= "+ sa.area(2)); 
    System.out.println("Surface area of cylinder= "+ cia.area(3,4)); 
       } 
} 
Output:  

Surface area of cube = 6.0 
Surface area of sphere= 50.24 
Surface area of cylinder= 12.0 

Example Program of Dynamic Polymorphism with Method Overriding  
class Shape  
{ 
    void draw() 
    { 
        System.out.println("Your favorite shape"); 
    } 
    void  numberOfSides() 
    { 
         System.out.println("side = 0"); 
    } 
} 
class Square extends Shape  
{ 
    void draw() 
    { 
        System.out.println("SQUARE "); 
    } 
    void numberOfSides() 
    { 
        System.out.println("side = 4 ");  
    } 
} 



class Pentagon extends Shape  
{ 
    void draw() 
    { 
        System.out.println("PENTAGON "); 
} 
    void numberOfSides() 
    { 
        System.out.println("side= 5");  
    } 
} 
class Hexagon extends Shape  
{ 
    void draw() 
{ 
        System.out.println("HEXAGON "); 
 } 
void numberOfSides() 
{ 
        System.out.println("side = 6 "); 
} 
} 
public class Overriding 
{ 

public static void main(String []args) 
{ 

         Square s = new Square(); 
         s.draw(); 
         s.numberOfSides(); 

Pentagon p = new Pentagon(); 
         p.draw(); 
         p.numberOfSides(); 
         Hexagon h = new Hexagon(); 
         h.draw(); 
         h.numberOfSides(); 
     } 
} 
Output: 

SQUARE; 
side = 4; 
PENTAGON; 
side= 5 
HEXAGON 
side = 6 
 

Advantages of OOP over procedural programming 
Procedural programming is about writing procedures or methods that perform operations on 

the data, while object-oriented programming is about creating objects that contain both data 

and methods. Object-oriented programming has several advantages over procedural 



programming: 

 OOP is faster and easier to execute 

 OOP provides a clear structure for the programs 

 OOP helps to keep the Java code DRY "Don't Repeat Yourself", and makes the code 
easier to maintain, modify and debug 

 OOP makes it possible to create full reusable applications with less code and shorter 
development time. 

Classes and Objects: 
Java is an object-oriented programming language. Everything in Java is associated with 

classes and objects, along with its attributes and methods. For example: in real life, a car is an 

object. The car has attributes, such as weight and color, and methods, such as drive and 

brake. A Class is like an object constructor, or a "blueprint" for creating objects. 

Java Classes 
A class in Java is a set of objects which shares common characteristics/ behavior and 

common properties/ attributes. It is a user-defined blueprint or prototype from which objects 

are created. For example, Student is a class while a particular student named Ravi is an 

object. 

Properties of Java Classes 
1. Class is not a real-world entity. It is just a template or blueprint or prototype from 

which objects are created. 

2. Class does not occupy memory. 

3. Class is a group of variables of different data types and a group of methods. 

4. A Class in Java can contain: 

 Data member 

 Method 

 Constructor 

 Nested Class 

 Interface 

 
Class Declaration in Java: 
access_modifier class <class_name> 
{   
    data member;   
    method;   
    constructor; 
    nested class; 



    interface; 
} 
Example: 
// Java Program for class example 
class Student  
{ 
  // data member (also instance variable) 
     int id; 
     // data member (also instance variable) 
     String name; 
     public static void main(String args[]) 
     { 
          // creating an object of 
          // Student 
          Student s1 = new Student(); 
          System.out.println(s1.id); 
          System.out.println(s1.name); 
     } 
} 
 Components of Java Classes 
 In general, class declarations can include these components, in order:  

1. Modifiers: A class can be public or has default access (Refer this for details). 

2. Class keyword: class keyword is used to create a class. 

3. Class name: The name should begin with an initial letter (capitalized by convention). 

4. Superclass (if any): The name of the class‘s parent (superclass), if any, preceded by 

the keyword extends. A class can only extend (subclass) one parent. 

5. Interfaces (if any): A comma-separated list of interfaces implemented by the class, if 
any, preceded by the keyword implements. A class can implement more than one 
interface. 

6. Body: The class body is surrounded by braces, {}. 

 
Java Objects 
An object in Java is a basic unit of Object-Oriented Programming and represents real-life 

entities. Objects are the instances of a class that are created to use the attributes and methods 

of a class.  A typical Java program creates many objects, which as you know, interact by 

invoking methods. An object consists of:  

1. State: It is represented by attributes of an object. It also reflects the properties of an 
object. 

2. Behavior: It is represented by the methods of an object. It also reflects the response of 
an object with other objects. 

3. Identity: It gives a unique name to an object and enables one object to interact with 
other objects. 



Example of an object: dog 

 

Objects correspond to things found in the real world. For example, a graphics program may 

have objects such as ―circle‖, ―square‖, and ―menu‖. An online shopping system might 

have objects such as ―shopping cart‖, ―customer‖, and ―product‖.  

  

Creating Objects  
When an object of a class is created, the class is said to be instantiated. All the instances 

share the attributes and the behavior of the class. But the values of those attributes, i.e. the 

state are unique for each object. A single class may have any number of instances. 

Example: 

 

As we declare variables like (type name;). This notifies the compiler that we will use the 

name to refer to data whose type is type. With a primitive variable, this declaration also 

reserves the proper amount of memory for the variable. So for reference variables , the type 

must be strictly a concrete class name. In general, we can’t create objects of an abstract class 

or an interface.   

Syntax:  Dog tuffy; 

If we declare a reference variable(tuffy) like this, its value will be undetermined(null) until an 

object is actually created and assigned to it. Simply declaring a reference variable does not 

create an object. 

Initializing a Java object 
The new operator instantiates a class by allocating memory for a new object and returning a 

reference to that memory. The new operator also invokes the class constructor.  

Example: 
// Class Declaration 



public class Dog  
{ 
    // Instance Variables 
    String name; 
    String breed; 
    int age; 
    String color; 
    // Constructor Declaration of Class 
    public Dog (String name, String breed, int age, String color) 
    { 
        this.name = name; 
        this.breed = breed; 
        this.age = age; 
        this.color = color; 
    } 
    // method 1 
    public String getName() { return name; } 
    // method 2 
    public String getBreed() { return breed; } 
    // method 3 
    public int getAge() { return age; } 
    // method 4 
    public String getColor() { return color; } 
    @Override public String toString() 
    { 
        return ("Hi my name is " + this.getName() 
                + ".\nMy breed,age and color are " 
                + this.getBreed() + "," + this.getAge() 
                + "," + this.getColor()); 
    } 
    public static void main(String[] args) 
    { 
        Dog tuffy 
            = new Dog("tuffy", "papillon", 5, "white"); 
        System.out.println(tuffy.toString()); 
    } 
} 
Output: 
Hi my name is tuffy. 
My breed,age and color are papillon,5,white 
 
Ways to Create an Object of a Class 
There are four ways to create objects in Java. Strictly speaking, there is only one way (by 

using a new keyword), and the rest internally use a new keyword.  

i.  Using new keyword 
It is the most common and general way to create an object in Java.  
Example: 

// creating object of class Test 
Test t = new Test(); 



ii.  Using Class.forName (String className) method 
There is a pre-defined class in java.lang package with name Class. The forName(String 

className) method returns the Class object associated with the class with the given string 

name. We have to give a fully qualified name for a class. On calling the new Instance() 

method on this Class object returns a new instance of the class with the given string name. 

// creating object of public class Test 
// consider class Test present in com.p1 package 
Test obj = (Test)Class.forName("com.p1.Test").newInstance(); 

iii.  Using clone() method 
clone() method is present in the Object class. It creates and returns a copy of the object. 

// creating object of class Test 
Test t1 = new Test(); 
// creating clone of above object 
Test t2 = (Test)t1.clone(); 
 

 
Access Specifier in Java 
In Java, Access modifiers help to restrict the scope of a class, constructor, variable, method, 

or data member. It provides security, accessibility, etc to the user depending upon the access 

modifier used with the element. Let us learn about Java Access Modifiers, their types, and the 

uses of access modifiers in this article. 

Types of Access Modifiers in Java 
There are four types of access modifiers available in Java:  

1. Default – No keyword required 

2. Private 

3. Protected 

4. Public 

1. Default Access Modifier 

When no access modifier is specified for a class, method, or data member – It is said to be 

having the default access modifier by default. The data members, classes, or methods that are 

not declared using any access modifiers i.e. having default access modifiers are accessible 

only within the same package. In this example, we will create two packages and the classes in 

the packages will be having the default access modifiers and we will try to access a class 

from one package from a class of the second package. 

// Java program to illustrate default modifier  
package p1;  
// Class Geek is having Default access modifier  



class Geek  
{  
    void display()  
    {  
        System.out.println("Hello World!");  
    }  
} 

2. Private Access Modifier 
The private access modifier is specified using the keyword private. The methods or data 

members declared as private are accessible only within the class in which they are declared. 

Any other class of the same package will not be able to access these members. Top-level 

classes or interfaces cannot be declared as private because private means ―only visible within 

the enclosing class‖. protected means ―only visible within the enclosing class and any 

subclasses‖, Hence these modifiers in terms of application to classes, apply only to nested 

classes and not on top-level classes. In this example, we will create two classes A and B 

within the same package p1. We will declare a method in class A as private and try to access 

this method from class B and see the result. 

// Java program to illustrate error while 
// Using class from different package with 
// Private Modifier 
package p1; 
// Class A 
class A  
{ 
     private void display() 

{ 
          System.out.println("GeeksforGeeks"); 
     } 
} 
// Class B 
class B  
{ 
  public static void main(String args[]) 
     { 
          A obj = new A(); 
          // Trying to access private method of another class 
          obj.display(); 
    } 
} 
 
Output: 
error:  display() has private access in A 
         obj.display(); 
 
3. Protected Access Modifier 



The protected access modifier is specified using the keyword protected. The methods or data 

members declared as protected are accessible within the same package or subclasses in 

different packages. In this example, we will create two packages p1 and p2. Class A in p1 is 

made public, to access it in p2. The method display in class A is protected and class B is 

inherited from class A and this protected method is then accessed by creating an object of 

class B. 

Example: 
// Java Program to Illustrate 
// Protected Modifier 
package p1; 
// Class A 
public class A  
{ 
    protected void display() 
{ 
        System.out.println("GeeksforGeeks"); 
} 
} 
 
 
 
4 Public Access modifier: 

The public access modifier is specified using the keyword public. The public access modifier 

has the widest scope among all other access modifiers. Classes, methods, or data members 

that are declared as public are accessible from everywhere in the program. There is no 

restriction on the scope of public data members. 

Example: 
// Java program to illustrate  
// public modifier  
package p1;  
public class A  
{  
public void display()  
    {  
        System.out.println("GeeksforGeeks");  
    }  
}  

 
Constructor and Destructor in Java 
In Java, a constructor is a particular method that initializes an object when it is first formed. It 

guarantees that the item begins its trip with predetermined values and configurations. 

Consider it a blueprint for the object, outlining how it should be initialized. In Java, 

constructors have the same name as the class they belong to. They have no return type, not 



even void, which distinguishes them from conventional methods. When you build an instance 

of a class using the 'new' keyword, the constructor is automatically invoked, setting the stage 

for the object to perform its duties. 

Syntax:  
public class Car  
{ 

      // Constructor 
      public Car()  

{ 
           // Initialization logic goes here 
      } 

} 
 
Constructors exist in a variety of types; parameterized constructors enable you to supply data 

during object formation, whilst default constructors are used when there is no explicit 

constructor declared. Unlike several programming languages, Java does not have explicit 

destructors. Instead, it depends on the garbage collector to automatically reclaim memory 

used by things that are no longer in use. This technique, referred to as garbage collection, 

relieves the programmer of manual memory management duties. 

Java doesn't offer a traditional destructor, developers can implement the finalize() method. 

However, it's essential to note that relying solely on finalize() for cleanup is not 

recommended due to its unpredictable nature. 

public class Car  
{ 
    // Finalize method for cleanup 
    @Override 
    protected void finalize() throws Throwable { 
        // Cleanup logic goes here 
        super.finalize(); 
    } 
} 
To summarise, constructors give life to Java objects by purposefully initialising them, 

whereas destructors, or their substitutes, provide a graceful farewell when an object's trip is 

over. The ability to generate and deconstruct objects is critical for developing strong and 

efficient Java programs. 

 
Static members in Java 
The static keyword in Java is mainly used for memory management. The static keyword in 

Java is used to share the same variable or method of a given class. The users can apply static 

keywords with variables, methods, blocks, and nested classes. The static keyword belongs to 



the class than an instance of the class. The static keyword is used for a constant variable or a 

method that is the same for every instance of a class. 

The static keyword is a non-access modifier in Java that is applicable for the following:  
 Blocks 

 Variables 

 Methods 

 Classes 

Note: To create a static member (block, variable, method, nested class), precede its 
declaration with the keyword static.  
Characteristics of static keyword: 
Shared memory allocation: Static variables and methods are allocated memory space only 

once during the execution of the program. This memory space is shared among all instances 

of the class, which makes static members useful for maintaining global state or shared 

functionality. 

Accessible without object instantiation: Static members can be accessed without the need to 

create an instance of the class. This makes them useful for providing utility functions and 

constants that can be used across the entire program. 

Associated with class, not objects: Static members are associated with the class, not with 

individual objects. This means that changes to a static member are reflected in all instances of 

the class, and that you can access static members using the class name rather than an object 

reference. Cannot access non-static members: Static methods and variables cannot access 

non-static members of a class, as they are not associated with any particular instance of the 

class. Can be overloaded, but not overridden: Static methods can be overloaded, which means 

that you can define multiple methods with the same name but different parameters. However, 

they cannot be overridden, as they are associated with the class rather than with a particular 

instance of the class. 

When a member is declared static, it can be accessed before any objects of its class are 

created, and without reference to any object. For example, in the below java program, we are 

accessing static method m1() without creating any object of the Test class.  

// Java program to demonstrate that a static member 
// can be accessed before instantiating a class 
class Test 
{ 
    // static method 
    static void m1() 
    { 
        System.out.println("from m1"); 



    } 
    public static void main(String[] args) 
    { 
          // calling m1 without creating 
          // any object of class Test 
           m1(); 
    } 
} 

Output:  
from m1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



Module II 
 

Inheritance 
Java, Inheritance is an important pillar of OOP(Object-Oriented Programming). 

It is the mechanism in Java by which one class is allowed to inherit the features 

(fields and methods) of another class. In Java, Inheritance means creating new 

classes based on existing ones. A class that inherits from another class can reuse 

the methods and fields of that class. In addition, you can add new fields and 

methods to your current class as well.   

 
Why Do We Need Java Inheritance? 
 

 Code Reusability: The code written in the Superclass is common to all 

subclasses. Child classes can directly use the parent class code. 

 Method Overriding: Method Overriding is achievable only through 

Inheritance. It is one of the ways by which Java achieves Run Time 

Polymorphism. 

 Abstraction: The concept of abstract where we do not have to provide all 

details is achieved through inheritance. Abstraction only shows the 

functionality to the user. 

Base and Derive Class in Java Inheritance 

 Class: Class is a set of objects which shares common characteristics/ 

behavior and common properties/ attributes. Class is not a real-world 

entity. It is just a template or blueprint or prototype from which objects 

are created. 

 Super Class/Parent Class: The class whose features are inherited is 

known as a superclass (or a base class or a parent class). 

 Sub Class/Child Class: The class that inherits the other class is known 

as a subclass (or a derived class, extended class, or child class). The 



subclass can add its own fields and methods in addition to the superclass 

fields and methods. 

 Reusability: Inheritance supports the concept of ―reusability‖, i.e. when 

we want to create a new class and there is already a class that includes 

some of the code that we want, we can derive our new class from the 

existing class. By doing this, we are reusing the fields and methods of the 

existing class. 

 

How to Use Inheritance in Java? 

The extends keyword is used for inheritance in Java. Using the extends 

keyword indicates you are derived from an existing class. In other words, 

―extends‖ refers to increased functionality. 

 
Syntax:  

class DerivedClass extends BaseClass   
{   
   //methods and fields   
}   

 
 
Inheritance is one of the key features of OOP that allows us to create a new 
class from an existing class. The new class that is created is known 
as subclass (child or derived class) and the existing class from where the child 
class is derived is known as superclass (parent or base class). 
The extends keyword is used to perform inheritance in Java.  
 
For example: 
 
 

class Animal  
{ 

    // methods and fields 
} 

 
// use of extends keyword 
// to perform inheritance 



 
class Dog extends Animal  
{ 

    // methods and fields of Animal 
// methods and fields of Dog 

} 
 
In the above example, the Dog class is created by inheriting the methods and 

fields from the Animal class. Here, Dog is the subclass and Animal is the 

superclass. 

 
Example 1: Java Inheritance 
class Animal  
{ 
   // field and method of the parent class 
   String name; 
   public void eat()  

{ 
      System.out.println("I can eat"); 
   } 
} 
 
// inherit from Animal 
class Dog extends Animal  
{ 
   // new method in subclass 
   public void display()  

{ 
      System.out.println("My name is " + name); 
   } 
} 
 
class Main  
{ 
  public static void main(String[] args)  

{ 
      // create an object of the subclass 
      Dog labrador = new Dog(); 
      // access field of superclass 
      labrador.name = "Rohu"; 
      labrador.display(); 



      // call method of superclass 
      // using object of subclass 
      labrador.eat(); 
   } 
} 
 
Output: 

My name is Rohu 
I can eat 

 
 

Types of Inheritance in Java 
 
Have you ever wondered about the ways in which Java allows for code reusability and 

hierarchical organization through inheritance? Java supports several types of inheritance: 

single inheritance through class extension, multilevel inheritance to create a chain of class 

relationships, hierarchical inheritance for multiple classes to share a single superclass, and 

multiple inheritance through interfaces for a class to adopt methods from multiple sources. 

Hybrid inheritance combines these approaches, offering flexibility in complex software 

design. The following sections elaborate the types of reusability support by java. 

 

 Single-level inheritance 

 Multi-level Inheritance 

 Hierarchical Inheritance 

 Multiple Inheritance 

 Hybrid Inheritance 

 

NOTE: Java does not support Multiple Inheritance and Hybrid Inheritance directly through 

classes due to its language design, it facilitates aspects of these inheritance types using 

interfaces and other mechanisms. 

 

Single Inheritance 

In this type of java inheritance, the class inherits the properties of some other class. It allows 

derived classes to take properties and behavior from a single-parent class. In turn, this will 

make it possible to reuse current code and give it new functionalities. Here, Class A serves as 

the parent class, while Class B, the child class, inherits the traits and characteristics of the 



parent class. The following code shows a comparable idea: 

 

class Animal 

{ 

void eat() 

{  

System.out.println(―eating‖); 

} 

} 

class Dog extends Animal 

{ 

void bark() 

{ 

System.out.println(―barking‖); 

} 

} 

class TestInheritance 

{ 

public static void main(String args[]) 

{ 

Dog d=new Dog(); 

d.bark(); 

d.eat(); 

} 

} 

 

Multi-Level Inheritance 

Multi-level type of java inheritance comes with a chain of inheritance. This indicates that we 

feature a parent class which a derived class inherits. The derived class then serves as the 

parent to the next class, and so forth. There is a dog class descended from the Animal class, 

sticking with the Animal class example from below. Another great option is the puppy class – 

a young dog descended from the Dog class. This way, you can possess a tiered inheritance. 

 



class Animal 

{ 

void eat() 

{ 

System.out.println(―eating…‖); 

} 

} 

class Dog extends Animal 

{ 

void bark() 

{  

System.out.println(―barking…‖); 

} 

} 

class Puppy extends Dog 

{ 

void weep() 

{ 

System.out.println(―weeping…‖); 

} 

} 

class TestInheritance2 

{ 

public static void main(String args[]) 

{ 

Puppy d=new Puppy(); 

d.weep(); 

d.bark(); 

d.eat(); 

} 

} 

 

 



Multiple Inheritances 

The concept of inheritance, which enables classes to adopt features and attributes from other 

classes, is fundamental to object-oriented programming. Due to Java's support for single 

inheritance, a class can only descend from one superclass. However, Java offers a method for 

achieving multiple inheritances through interfaces, enabling a class to implement many 

interfaces. We will examine the idea of multiple inheritance in Java, how it is implemented 

using interfaces, and use examples to help us understand. 

Understanding Multiple Inheritance A class's capacity to inherit traits from several classes is 

referred to as multiple inheritances. This notion may be quite helpful when a class needs 

features from many sources. Multiple inheritances, however, can result in issues like the 

diamond problem, which occurs when two superclasses share the same method or field and 

causes conflicts. Java uses interfaces to implement multiple inheritances in order to prevent 

these conflicts. 

Java interfaces 

A Java interface is a group of abstract methods that specify the behavior that implementing 

classes must follow. It serves as a class blueprint by outlining each class's methods. Interfaces 

offer a degree of abstraction for specifying behaviors but cannot be instantiated like classes. 

In Java, a class can successfully implement several interfaces to achieve multiple inheritance. 

Syntax of implementing multiple interfaces: 

class MyClass implements Interface1, Interface2, Interface3  

{   

    // class body   

} 

   

The classes "MyClass" and "Interface1", "Interface2", and "Interface3" can now inherit and 

implement methods from other interfaces. As a result, the class is able to display the 

behaviours specified in every interface it implements. 

Example - 1 

Let's look at an example situation to demonstrate multiple inheritance using Java interfaces. 

Imagine that you and I are creating a game with a variety of characters, such as warriors and 

magicians. We also carry a variety of weaponry, including swords and wands. Although we 

want to keep character kinds and weapon types apart, we also want our characters to be able 

to utilize weapons. The following is how multiple inheritances through interfaces may help us 



do this: 

 

interface Character  

{   

    void attack();   

}     

interface Weapon  

{   

    void use();   

}     

class Warrior implements Character, Weapon  

{   

     public void attack()  

{   

          System.out.println("Warrior attacks with a sword.");   

     }   

     public void use()  

{   

          System.out.println("Warrior uses a sword.");   

     }   

}   

class Mage implements Character, Weapon  

{   

public void attack()  

{   

          System.out.println("Mage attacks with a wand.");   

     }   

   public void use()  

{   

          System.out.println("Mage uses a wand.");   

     }   

}   

public class MultipleInheritance  

{   



     public static void main(String[] args)  

{   

          Warrior warrior = new Warrior();   

          Mage mage = new Mage();   

          warrior.attack(); // Output: Warrior attacks with a sword.   

          warrior.use(); // Output: Warrior uses a sword.   

         mage.attack(); // Output: Mage attacks with a wand.   

          mage.use(); // Output: Mage uses a wand.   

     }   

}   

Output: 

Warrior attacks with a sword. 

Warrior uses a sword. 

Mage attacks with a wand. 

Mage uses a wand. 

 

Explanation: The interfaces "Character" and "Weapon" in the example above specify the 

behaviour that classes that implement them must have. As a result of the classes "Warrior" 

and "Mage" implementing both interfaces, the necessary behaviors may be inherited and 

shown. The main method shows how to instantiate these classes' objects and call their 

corresponding behaviors.  

Hierarchical Inheritance 

This type of java inheritance is where many subclasses inherit from one single class. 

Basically it is a combination of more than one type of java inheritance. When a class contains 

several child classes or subclasses, or, to put it another way, when multiple child classes share 

the same parent class, this type of inheritance is referred to as hierarchical. 

class Animal 

{ 

void eat() 

{ 

System.out.println(―eating…‖); 

} 



} 

class Dog extends Animal 

{ 

void bark() 

{ 

System.out.println(―barking…‖); 

} 

} 

class Cat extends Animal 

{ 

void meow() 

{  

System.out.println(―meowing…‖); 

} 

} 

class TestInheritance3 

{ 

public static void main(String args[]) 

{ 

Cat c=new Cat(); 

c.meow(); 

c.eat(); 

} 

} 

 

Hybrid Inheritance 

Hybrid type of java inheritance is a combination of more than two types of java inheritances 

single and multiple. A hybrid inheritance combines a single or more of the inheritance types 

we‘ve covered so far. Any combination, though, leads to a form of multiple inheritances that 

Java does not support.  

 

Hybrid Inheritance Example: 

Class A and B extends class C → Hierarchical inheritance 



Class D extends class A → Single inheritance 

 

class C 

{ 

   public void disp() 

   { 

 System.out.println("C"); 

   } 

} 

 

class A extends C 

{ 

   public void disp() 

   { 

 System.out.println("A"); 

   } 

} 

 

class B extends C 

{ 

   public void disp() 

   { 

 System.out.println("B"); 

   } 

  

} 

 

class D extends A 

{ 

   public void disp() 

   { 

 System.out.println("D"); 

   } 

   public static void main(String args[]){ 



 

 D obj = new D(); 

 obj.disp(); 

   } 

} 

 

Output: D 

 
Access control in inheritance 
 
Java provides a rich set of modifiers. They are used to control access mechanisms and also 

provide information about class functionalities to JVM. They are divided into two categories 

namely: 

 Access modifiers 

 Non-access modifiers 

 
Java‘s access modifiers are public, private, and protected. Java also defines a default access 

level (called package-private). 

 public: When a member of a class is modified by public, then that member can be 

accessed by any other code. 

 private: When a member of a class is specified as private, then that member can only 

be accessed by other members of its class.  

 default: It is also referred to as no modifier. Whenever we do not use any access 

modifier it is treated as default where this allows us to access within a class, within a 

subclass, and also non-sun class within a package but when the package differs now 

be it a subclass or non-class we are not able to access.  

 protected: With the above default keyword we were facing an issue as we are 

getting closer to the real world with the above default modifier but there was a 

constriction as we are not able to access class sub-class from a different package. So 

protected access modifier allows not only to access class be it subclass or non-sub 

class but allows us to access subclass of the different package which brings us very 

close to a real-world and hence strong understanding of inheritance is required for 

understanding and implementing this keyword. 



 

The following table elaborate the details about access modifiers provided. 

 
 
Note: Now you can understand why main( ) has always been preceded by the public 

modifier. It is called by code that is outside the program—that is, by the Java run-time 

system. When no access modifier is used, then by default the member of a class is public 

within its own package, but cannot be accessed outside of its package. protected applies only 

when inheritance is involved.  

Polymorphism 
Polymorphism is derived from two Greek words, ―poly‖ and ―morph‖, which mean ―many‖ 

and ―forms‖, respectively. Hence, polymorphism meaning in Java refers to the ability of 

objects to take on many forms. In other words, it allows different objects to respond to the 

same message or method call in multiple ways.  

Polymorphism in Java Example 

As previously explained, polymorphism in Java helps an object take on many different forms. 

In this section, we will provide different examples of polymorphism to show how it works. 

The Animal class has a makeSound() method that outputs ―Animal making a sound…‖ while 

the subclasses Dog, Cat, and Elephant, each provide their own implementation of the same 

function to produce individual noises. 

class Animal  

{ 

    void makeSound()  

{ 

        System.out.println("Animal making a sound..."); 

} 

} 

class Dog extends Animal  

{ 



    void makeSound() { 

        System.out.println("Dog barking..."); 

    } 

} 

class Cat extends Animal  

{ 

     void makeSound()  

{ 

          System.out.println("Cat meowing..."); 

     } 

} 

class Elephant extends Animal  

{ 

     void makeSound()  

{ 

          System.out.println("Elephant trumpeting..."); 

     } 

} 

class TestPolymorphism2  

{ 

    public static void main(String args[])  

{ 

        Animal animal; 

        animal = new Dog(); 

        animal.makeSound(); 

        animal = new Cat(); 

        animal.makeSound(); 

        animal = new Elephant(); 

        animal.makeSound(); 

    } 

} 

Output: 

Dog barking… 

Cat meowing… 



Elephant trumpeting… 

 
Function Overloading in Java 
Function Overloading in Java occurs when there are functions having the same name but 

have different numbers of parameters passed to it, which can be different in data like int, 

double, float and used to return different values are computed inside the respective 

overloaded method. Function overloading is used to reduce complexity and increase the 

efficiency of the program by involving more functions that are segregated and can be used to 

distinguish among each other with respect to their individual functionality. Overloaded 

functions are related to compile-time or static polymorphism. There is also a concept of type 

conversion, which is basically used in overloaded functions used to calculate the conversion 

of type in variables. 

Overloaded functions have the same name but different types of arguments or parameters 

assigned to them. They can be used to calculate mathematical or logical operations within the 

number of assigned variables in the method. The syntax of the overloaded function can be 

given below, where there are up to N number of variables assigned. 

Syntax: 
public class OverloadedMethod 
{ 

public int FunctionName(int x, int y) //Two parameters in the function 
{ 

return (x + y); //Returns the sum of the two numbers 
} 

// This function takes three integer parameters 
public int FunctionName(int x, int y, int z) 
{ 

return (x + y + z); 
} 

// This function takes two double parameters 
public double FunctionName(double x, double y) 
{ 

return (x + y); 
} 

//Many more such methods can be done with different number of parameters 
// Code used to input the number and 

public static void main(String args[]) 
{ 

FunctionName s = new FunctionName(); 
System.out.println(s.FunctionName(10, 20)); 
System.out.println(s. FunctionName(10, 20, 30)); 
System.out.println(s. FunctionName(10.5, 20.5)); 

} 
} 



 
Explanation: Function overloading works by calling different functions having the same 

name, but the different number of arguments passed to it. There are many coding examples 

that can be shown in order to identify the benefits and disadvantages of function overloading 

properly. 

 
 
Operator overloading in Java 

Operator overloading aims to redefine an operator that has been defined and has certain 

functions to complete more detailed and specific operations and other functions. From an 

object-oriented perspective, it means an operator can be defined as a method of a class, so the 

function of the operator can be used to represent a certain behaviour of the object. 

There are at least two benefits to being able to perform operator overloading for numeric 
operations of non-primitive types. 

1. The code is simpler to write and less error-prone. 

2. The code is easier to read without many parentheses. 

 
How to Implement Operator Overloading in Java 
The implementation of operator overloading in Java still uses Manifold. Manifold allows you 

to overload Java operators in various scenarios, such as arithmetic operators (including +,-

, *, /, and %), comparison operators (>, >=, <, <=, ==, and !=), and index operators ([]). 

Please see Java's Missing Feature: Extension Methods for more information about the 

integration of Manifold. 

Arithmetic Operator 

Manifold is a function that maps each overload of an arithmetic operator to a specific name. 

For example, if you define a plus(B) method in class A, that class can be called using a + 

b instead of a.plus(b). The following chart describes the mappings: 

Operator Method Call 

c = a + b c = a.plus(b) 

c = a – b c = a.minus(b) 

c = a * b c = a.times(b) 

c = a / b c = a.div(b) 

c = a % b c = a.rem(b) 

 
Those familiar with Kotlin should know that this is an imitation of Kotlin's operator 

overloading. 



Let's define a numeric Num to facilitate illustration. 

public class Num  
{ 
 
     private final int v; 
     public Num(int v)  

{ 
          this.v = v; 
     } 
 
     public Num plus(Num that)  

{ 
          return new Num(this.v + that.v); 
     } 
 
     public Num minus(Num that)  

{ 
          return new Num(this.v - that.v); 
     } 
 
     public Num times(Num that)  

{ 
          return new Num(this.v * that.v); 
     } 
} 
 

For the following code: 
Num a = new Num(1); 
Num b = new Num(2); 
Num c = a + b - a; 

 
Virtual functions and runtime polymorphism 
A member function that has the keyword virtual used in its declaration in the base class and is 

redefined (Overridden) in the derived class is referred to as a virtual function. The late 

binding instruction instructs the compiler to execute the called function during runtime by 

matching the object with the appropriately called function. Runtime Polymorphism refers to 

this method. 

1. No matter what kind of reference (or pointer) is used to invoke a function, virtual 

functions make sure the right function is called for an object. 

2. Their primary purpose is to implement runtime polymorphism. 

3. In base classes, functions are declared using the virtual keyword. 

4. Runtime resolution of function calls is carried out. 



Polymorphism is a term used to describe the capacity to assume several shapes. If there is a 

hierarchy of classes connected to one another by inheritance, it happens. Polymorphism, 

which is defined as "showing diverse traits in different contexts," can be summarised as 

"showing different characteristics in a variety of situations" and "polymorphism." 

What is the use of virtual functions? 

To achieve Runtime Polymorphism, virtual functions are primarily used. Only a base class 

type pointer (or reference) can enable runtime polymorphism. A base class pointer can also 

point to both objects from the base class and those from derived classes. 

Also, without even knowing the type of derived class object, we can use virtual functions to 

compile a list of base class pointers and call any of the derived classes' methods. 

#include<iostream>   
using namespace std;   
class B  
{   
public:   
          virtual void s()  

{   
           cout<<" In Base \n";   
       }   
};   
class D: public B  
{   

public:   
        void s()  

{   
           cout<<"In Derived \n";   
        }   
};   
int main(void)  
{   

D d; // An object of class D   
B *b= &d; // A pointer of type B* pointing to d   
b->s(); // prints "D::s() called"   

    return 0;   
}   
Output: In Derived 

What are the rules for virtual functions? 
I. Virtual functions are not permitted to be static or friendly to other classes. 

II. Pointers or references of base class type are required to access virtual functions. 

III. Both the base class and any derived classes should use the same function prototype. 

IV. There cannot be a virtual constructor in a class. However, it might have a virtual 



destroyer. 

V. The base class always defines them, and the derived class redefines them. 

What is runtime polymorphism? 

Runtime polymorphism is the process of binding an object at runtime with a capability. 

Overriding methods is one way to implement runtime polymorphism. At runtime, not at 

compilation time, the Java virtual machine decides which method to invoke. Additionally 

known as dynamic binding or late binding. The parent class's method is overridden in the 

child class, according to this concept. The term "method overriding" refers to the situation 

where a child class implements a method specifically that was supplied by one of its parent 

classes. You can see runtime polymorphism in the example that follows. 

 
Example 
class Test  
{   

public void method()   
     {   
          System.out.println("Method 1");   
     }   
}   
public class DEMO extends Test  
{   

public void method()   
     {   
          System.out.println("Method 2");   
     }   

public static void main(String args[])   
     {   
          Test test = new DEMO();    

         test.method();   
     }   
}   

Output: Method 2 
 
What are the limitations of virtual functions? 
Slower: The virtual mechanism causes the function call to take a little longer, making it 

harder for the compiler to optimize as it is unsure which function will be called at 

compilation time. Virtual functions can make it slightly more challenging to determine where 

a function is being called from in complicated systems, which makes them more challenging 

to debug. 



 
Abstract Class in Java 
 
In Java, abstract class is declared with the abstract keyword. It may have both abstract and 

non-abstract methods (methods with bodies). An abstract is a Java modifier applicable for 

classes and methods in Java but not for Variables. In this article, we will learn the use of 

abstract classes in Java. Furthermore, Java abstract class is a class that cannot be initiated by 

itself, it needs to be subclassed by another class to use its properties. An abstract class is 

declared using the ―abstract‖ keyword in its class definition. 

 
Illustration of Abstract class 
 
abstract class Shape  

{ 

    int color; 

    // An abstract function 

    abstract void draw(); 

} 

In Java, the following some important observations about abstract classes are as follows: 
 

1. An instance of an abstract class can not be created. 
 

2. Constructors are allowed. 
 

3. We can have an abstract class without any abstract method. 
 

4. There can be a final method in abstract class but any abstract method in 
class(abstract class) can not be declared as final  or in simpler terms final method can 
not be abstract itself as it will yield an error: “Illegal combination of modifiers: 
abstract and final”.  

 
5. We can define static methods in an abstract class. 

 
6. We can use the abstract keyword for declaring top-level classes (Outer class) as well 

as inner classes as abstract. 
 

7. If a class contains at least one abstract method then compulsory should declare a 
class as abstract.  

 
8. If the Child class is unable to provide implementation to all abstract methods of the 

Parent class then we should declare that Child class as abstract so that the next level 
Child class should provide implementation to the remaining abstract method. 

Example of Java Abstract Class 



 
// Abstract class 
abstract class Sunstar  
{ 
    abstract void printInfo(); 
} 
  
// Abstraction performed using extends 
class Employee extends Sunstar { 
    void printInfo() 
    { 
        String name = "avinash"; 
        int age = 21; 
        float salary = 222.2F; 
  
        System.out.println(name); 
        System.out.println(age); 
        System.out.println(salary); 
    } 
} 
  
// Base class 
class Base { 
    public static void main(String args[]) 
    { 
        Sunstar s = new Employee(); 
        s.printInfo(); 
    } 
} 
 
Output: 
 
avinash 
21 
222.2 
 
 
Pure Virtual Function 
 
Pure virtual function is a virtual function for which we don‘t have implementations. An 

abstract method in Java can be considered as a pure virtual function. Let‘s take an example to 

understand this better. 

Example of Pure Virtual Function: 

 

abstract class Dog 

{ 



final void bark() 

{ 

System.out.println("woof"); 

} 

abstract void jump(); //this is a pure virtual function 

} 

class MyDog extends Dog 

{ 

void jump() 

{ 

System.out.println("Jumps in the air"); 

} 

} 

public class Runner 

{ 

public static void main(String args[]) 

{ 

Dog ob1 = new MyDog(); 

ob1.jump(); 

} 

} 

 

Output: Jumps in the air 

 

This is how virtual function can be used with abstract class. 

 

 

Run-Time Polymorphism 

 

Run-time polymorphism is when a call to an overridden method is resolved at run-time 

instead of compile-time. The overridden method is called through the reference variable of 

the base class. 

Output: Java Certification Course 

 

https://www.edureka.co/blog/how-to-compile-run-java-program/


class Edureka 

{ 

public void show() 

{ 

System.out.println("welcome to edureka"); 

} 

} 

class Course extends Edureka 

{ 

public void show() 

{ 

System.out.println("Java Certification Program"); 

} 

public static void main(String args[]) 

{ 

Edureka ob1 = new Course(); 

ob1.show(); 

} 

} 

 

Points To Remember 

 For a virtual function in Java, you do not need an explicit declaration. It is 

any function that we have in a base class and redefined in the derived class with the 

same name. 

 The base class pointer can be used to refer to the object of the derived class. 

 During the execution of the program, the base class pointer is used to call the derived 

class functions. 

 

This brings us to the end of this article where we have learned about the Virtual Function In 

Java. I hope you are clear with all that has been shared with you in this tutorial. 

 

 



Section B 

Module III 
 
Encapsulation 
 

Encapsulation is a powerful mechanism for storing the data members and data methods of a 

class together. It is done in the form of a secure field accessible by only the members of the 

same class. Encapsulation in Java refers to integrating data (variables) and code (methods) 

into a single unit. In encapsulation, a class's variables are hidden from other classes and can 

only be accessed by the methods of the class in which they are found. 

 

 
Source: simplilearn 

 
Encapsulation in Java is an object-oriented procedure of combining the data members and 

data methods of the class inside the user-defined class. It is important to declare this class as 

private. It refers to the bundling of data and methods that operate on the data within a single 

unit, typically a class. This concept helps in hiding the internal state of an object and only 

exposing necessary functionalities through methods. By encapsulating data, Java ensures 

better data security and code maintainability. Understanding encapsulation is fundamental for 

building robust and organized Java applications, making a Java Course essential for 

mastering this concept. Next, we will understand the Syntax to be followed while 

implementing encapsulation in Java. 

 

 

 



Syntax: 

 

<Access_Modifier> class <Class_Name>  

{ 

 private <Data_Members>; 

 private <Data_Methods>; 

} 

 

For enhancing the understanding of the encapsulation process, let us go through the following 

sample program. 

 

Example: 

package dc; 

public class c  

{   

public static void main (String[] args)  

{  

Employee e = new Employee();  

e.setName("Robert");  

e.setAge(33);  

e.setEmpID(1253);  

System.out.println("Employee's name: " + e.getName());  

System.out.println("Employee's age: " + e.getAge());  

System.out.println("Employee's ID: " + e.getEmpID());  

}  

}  

package dc; 

 

public class Employee  

{ 

private String Name; 

private int EmpID; 

private int Age; 

public int getAge()  



{ 

return Age; 

} 

public String getName()  

{ 

return Name; 

} 

public int getEmpID()  

{ 

return EmpID; 

} 

public void setAge(int newAge)  

{ 

Age = newAge; 

} 

public void setName(String newName)  

{ 

Name = newName; 

} 

public void setRoll(int newEmpID)  

{ 

EmpID = newEmpID; 

} 

public void setEmpID(int EmpID)  

{ 

} 

} 

 

Output: 

Employee's name: Robert 

Employee's age: 33 

Employee's ID: 1253 

 
 



Data Hiding in Java 
 
Data hiding is a procedure done to avoid access to the data members and data methods and 

their logical implementation. Data hiding can be done by using the access specifiers. We have 

four access specifiers, which are as follows. 

 

 
Default 
 
Default is the first line of data hiding. If any class in Java is not mentioned with an access 

specifier, then the compiler will set ‗default‘ as the access specifier. The access specifications 

of default are extremely similar to that of the public access specifier. 

Public 
The public access specifier provides the access specifications to a class so that it can be 

accessed from anywhere within the program. 

 

Example: 

 

package Simplilearn; 

class vehicle  

{ 

public int tires; 

public void display()  

{ 

System.out.println("I have a vehicle."); 

System.out.println("It has " + tires + " tires."); 

} 

} 



public class Display  

{ 

public static void main(String[] args)  

{ 

vehicle veh = new vehicle(); 

veh.tires = 4; 

veh.display(); 

} 

} 

 

//Output: 

I have a vehicle. 

It has four tires. 

 

Private 

The private access specifier provides access to the data members, and the data methods limit 

to the class itself. 

 

 

 

Example: 

 

package Simplilearn; 

class Student  

{ 

private int rank; 

public int getRank()  

{ 

return rank; 

} 

public void setRank(int rank)  

{ 

this.rank = rank; 



} 

} 

public class school  

{ 

public static void main(String[] args)  

{ 

Student s = new Student(); 

s.setRank(1022); 

System.out.println("Student rank is " + s.getRank()); 

} 

} 

 

//Output: 

Student rank is 1022 

 

Protected 

The protected access specifier protects the class methods and members similar to the private 

access specifier. The main difference is that the access is limited to the entire package, unlike 

only a class with the private access specifier. 

 

Example: 

 

package Simplilearn; 

class human  

{ 

protected String stream; 

protected void display()  

{ 

System.out.println("Hello, I am a " + stream + " Student"); 

} 

} 

 

public class Student extends human  

{ 



public static void main(String[] args)  

{ 

Student s = new Student(); 

s.stream = "Computer Science and Engineering Technology"; 

s.display(); 

} 

} 

 

//Output: 

Hello, I am a Computer Science and Engineering Technology Student 

 
 
 
 
Accessor and Mutator methods in Java 
 

In object-oriented programming, encapsulation is a fundamental concept that refers to the 

practice of hiding the implementation details of an object and providing an interface to access 

its properties and behaviors. Accessor and mutator methods are two important concepts 

related to encapsulation in Java. 

 

Accessor 

Accessor methods, also known as getter methods, are methods that allow you to retrieve the 

value of an object's private instance variables. These methods provide read-only access to the 

object's state. By using accessor methods, you can ensure that the object's state is not 

modified accidentally or maliciously by external code. 

 

Mutator 

Mutator methods, also known as setter methods, are methods that allow you to modify the 

value of an object's private instance variables. These methods provide write-only access to 

the object's state. By using mutator methods, you can ensure that the object's state is modified 

only through a controlled interface. 

 

Let's take a look at an example to understand the concept of accessor and mutator methods in 



Java. Suppose we have a class called Person that has three private instance variables: name, 

age, and email. We want to provide access to these variables using accessor and mutator 

methods. 

 

public class Person  

{   

  private String name;   

     private int age;   

     private String email;   

      

public String getName()  

{   

          return name;   

     }   

     public void setName(String name)  

{   

          this.name = name;   

     }   

     public int getAge()  

{   

          return age;   

     }   

     public void setAge(int age)  

{   

          this.age = age;   

     }   

     public String getEmail()  

{   

          return email;   

     }   

     public void setEmail(String email)  

{   

          this.email = email;   

     }   



}   

 

In this example, we have defined three accessor methods: getName(), getAge(), and 

getEmail(), and three mutator methods: setName(), setAge(), and setEmail(). The accessor 

methods return the value of the corresponding instance variable, while the mutator methods 

set the value of the corresponding instance variable. 

Naming Convention 

The naming convention for accessor and mutator methods is important in Java. Accessor 

methods should be named starting with "get" followed by the name of the variable, with the 

first letter capitalized. Mutator methods should be named starting with "set" followed by the 

name of the variable, with the first letter capitalized. This naming convention makes it clear 

what each method does and makes the code more readable and maintainable. 

 

Accessor and mutator methods are an essential part of encapsulation in Java. They allow you 

to control access to an object's state, ensuring that it is accessed and modified only through a 

controlled interface. By following the naming convention for accessor and mutator methods, 

we can make your code more readable and maintainable. 

 

Example: 

 

Person.java 

import java.util.Scanner;   

public class Person  

{   

    private String name;   

    private int age;   

    private String email;   

     public String getName()  

{   

           return name;   

      }   

      public void setName(String name)  



{   

           this.name = name;   

      }   

      public int getAge()  

{   

           return age;   

      }   

      public void setAge(int age)  

{   

           this.age = age;   

      }   

      public String getEmail()  

{   

           return email;   

      }   

      public void setEmail(String email)  

{   

           this.email = email;   

      }   

      public static void main(String[] args)  

{   

           Scanner scanner = new Scanner(System.in);   

           Person person = new Person();   

           System.out.print("Enter name: ");   

           String name = scanner.nextLine();   

           person.setName(name);   

           System.out.print("Enter age: ");   

           int age = scanner.nextInt();   

           person.setAge(age);   

           scanner.nextLine(); // Consume the newline character left by nextInt()   

           System.out.print("Enter email: ");   

           String email = scanner.nextLine();   

           person.setEmail(email);   

           System.out.println("\nName: " + person.getName());   



           System.out.println("Age: " + person.getAge());   

           System.out.println("Email: " + person.getEmail());   

    }   

}   

 

Output: 

Name: Manoj 

Age: 21 

Email: manoj@gmail.com 

In this example, the main method creates a new instance of the Person class and uses the 

mutator methods (setName, setAge, and setEmail) to set the values of the object's private 

instance variables. Then, the accessor methods (getName, getAge, and getEmail) are used to 

retrieve the values of the instance variables and display them on the console. 

 

Advantage of Using Accessor and Mutator 

Advantage of using accessor and mutator methods is that they allows us to add validation and 

other processing logic to the process of getting and setting an object's state. For example, you 

could add a validation check to the "setAge(int age)" method to ensure that the age value is 

within a certain range, or add formatting logic to the "getName()" method to capitalize the 

first letter of the person's name. 

 

Benefits of Encapsulation  
 
Implementing the process of encapsulation in Java has proven to be highly effective and 

beneficial while programming in real-time. The following are the significant benefits of 

encapsulation. 

 

 A class can have complete control over its data members and data methods. 

 The class will maintain its data members and methods as read-only. 

 Data hiding prevents the user from the complex implementations in the code. 

 The variables of the class can be read-only or write-only as per the programmer's 

requirement. 

 Encapsulation in Java provides an option of code-reusability. 

 Using encapsulation will help in making changes to an existing code quickly. 



 Unit testing a code designed using encapsulation is elementary. 

 Standard IDEs have the support of getters and setters; this makes coding even faster. 

 
Interfaces and Abstract Classes 
 
Interfaces and abstraction are essential features of object-oriented programming. They 

provide a way to define contracts and hide implementation details. In Java, they play a crucial 

role in achieving code flexibility and maintainability. 

 

In Java, interfaces and abstraction are powerful concepts that enable developers to design and 

implement flexible and extensible software. In this comprehensive guide, we‘ll delve into the 

concepts of interfaces and abstraction, provide code examples, discuss key differences, 

explore new features in Java, and offer best practices to make your Java code more robust 

and maintainable. 

 

Interface: An Introduction 

An interface is a contract that specifies a set of methods without providing their 

implementations. It acts as a blueprint for classes that implement it. Interfaces enable 

multiple classes to share a common set of methods without forcing them into a specific 

inheritance hierarchy. 

 

Declaring interfaces: 

An interface is declared by using the interface keyword. It provides total abstraction; means 

all the methods in an interface are declared with the empty body, and all the fields are public, 

static and final by default. A class that implements an interface must implement all the 

methods declared in the interface. 

 

Syntax: 

interface <interface_name> 

{   

       

    // declare constant fields   

    // declare methods that abstract    

    // by default.   



}   

 

Defining an Interface 

In Java, you define an interface using the interface keyword: 

 

public interface Shape  

{ 

    double area(); 

    void draw(); 

} 

 

Implementing an Interface: 

A class implements an interface by using the implements keyword. It must provide 

implementations for all the methods defined in the interface: 

public class Circle implements Shape  

{ 

     private double radius; 

public Circle(double radius)  

{ 

          this.radius = radius; 

     } 

     @Override 

     public double area()  

{ 

          return Math.PI * radius * radius; 

     } 

     @Override 

     public void draw()  

{ 

          System.out.println("Drawing a circle"); 

     } 

} 

 



Extending Interfaces 

One interface can inherit another by the use of keyword extends. When a class implements an 

interface that inherits another interface, it must provide an implementation for all methods 

required by the interface inheritance chain. 

Example 1: 

interface A  

{ 

    void method1(); 

    void method2(); 

} 

// B now includes method1 and method2 

interface B extends A  

{ 

    void method3(); 

} 

// the class must implement all method of A and B. 

class gfg implements B  

{ 

     public void method1() 

{ 

          System.out.println("Method 1"); 

     } 

     public void method2() 

     { 

          System.out.println("Method 2"); 

     } 

     public void method3() 



     { 

          System.out.println("Method 3"); 

     } 

} 

Example 2: 

interface Student   

{ 

    public void data(); 

} 

class avi implements Student 

{ 

    public void data () 

    { 

        String name="avinash"; 

        int rollno=68; 

        System.out.println(name); 

        System.out.println(rollno); 

    } 

} 

public class inter_face  

{ 

    public static void main (String args []) 

    { 

        avi h= new avi(); 

        h.data(); 

    } 

} 



Output: 

avinash 

68 

In a Simple way, the interface contains multiple abstract methods, so write the 

implementation in implementation classes. If the implementation is unable to provide an 

implementation of all abstract methods, then declare the implementation class with an 

abstract modifier, and complete the remaining method implementation in the next created 

child classes. It is possible to declare multiple child classes but at final we have completed 

the implementation of all abstract methods.\ 

In general, the development process is step by step: 

 Level 1 – interfaces: It contains the service details. 

 Level 2 – abstract classes: It contains partial implementation. 

 Level 3 – implementation classes: It contains all implementations. 

 Level 4 – Final Code / Main Method: It have access of all interfaces data. 

 

 

Key Points to Remember (Interface) 

 Interfaces define a contract with method signatures but no method bodies. 

 A class can implement multiple interfaces. 

 Interfaces are used to achieve multiple inheritances in Java. 

 Interfaces can be used to define constants (variables with public static final). 

 

Advantages of Interfaces in Java 

The advantages of using interfaces in Java are as follows: 

 

 Without bothering about the implementation part, we can achieve the security of 



the implementation. 

 In Java, multiple inheritances are not allowed, however, you can use an interface to 

make use of it as you can implement more than one interface. 

Abstraction: An Introduction 

Abstraction is the process of hiding complex implementation details and showing only the 

necessary features of an object. In Java, you achieve abstraction using abstract classes and 

methods. 

 

Abstract Classes 

An abstract class is a class that cannot be instantiated but can contain abstract methods 

(methods without implementation) and concrete methods (methods with implementation). 

 

public abstract class Vehicle  

{ 

public abstract void start(); 

     public void stop()  

{ 

          System.out.println("Vehicle stopped"); 

} 

} 

 

Abstract Methods 

An abstract method is declared using the abstract keyword and must be implemented by any 

concrete subclass. 

 

public class Car extends Vehicle  

{ 

     @Override 

     public void start()  

{ 

          System.out.println("Car started"); 

     } 



} 

 

Key Points to Remember: 

 Abstract classes can’t be instantiated. 

 Abstract classes can have both abstract and concrete methods. 

 Subclasses of an abstract class must implement its abstract methods. 

 Abstraction is used to hide implementation details. 

 

Key Differences 

1. Interface vs. Abstract Class 

An interface can‘t have instance variables, while an abstract class can. A class can implement 

multiple interfaces, but it can extend only one abstract class. Interfaces provide a strong 

contract, and multiple inheritance is achieved through them. 

2. Method Definitions 

Interfaces define methods without implementation, while abstract classes can contain both 

abstract and concrete methods. 

3. Usage 

Use interfaces when you want to define a contract for a group of classes. Use abstract classes 

when you want to provide a common base class with some default behavior. 

 

Module IV 

Exception Handling 

An exception is an error event that can happen during the execution of a program and disrupts 

its normal flow. Java provides a robust and object-oriented way to handle exception scenarios 

known as Java Exception Handling. 

Exceptions in Java can arise from different kinds of situations such as wrong data entered by 

the user, hardware failure, network connection failure, or a database server that is down. The 

code that specifies what to do in specific exception scenarios is called exception handling. 



Throwing and Catching Exceptions 

Java creates an exception object when an error occurs while executing a statement. The 

exception object contains a lot of debugging information such as method hierarchy, line 

number where the exception occurred, and type of exception. 

If an exception occurs in a method, the process of creating the exception object and handing 

it over to the runtime environment is called “throwing the exception”. The normal flow of the 

program halts and the Java Runtime Environment (JRE) tries to find the handler for the 

exception. Exception Handler is the block of code that can process the exception object. 

 The logic to find the exception handler begins with searching in the method where the 

error occurred. 

 If no appropriate handler is found, then it will move to the caller method. 

 And so on. 

So. if the method‘s call stack is A->B->C and an exception is raised in method C, then the 

search for the appropriate handler will move from C->B->A. 

If an appropriate exception handler is found, the exception object is passed to the handler to 

process it. The handler is said to be “catching the exception”. If there is no appropriate 

exception handler, found then the program terminates and prints information about the 

exception to the console. Java Exception handling framework is used to handle runtime errors 

only. The compile-time errors have to be fixed by the developer writing the code else the 

program won‘t execute. 

Java Exception Handling Keywords 

Java provides specific keywords for exception handling purposes. 

1. throw – We know that if an error occurs, an exception object is getting created and 

then Java runtime starts processing to handle them. Sometimes we might want to 

generate exceptions explicitly in our code. For example, in a user authentication 

program, we should throw exceptions to clients if the password is null. 

The throw keyword is used to throw exceptions to the runtime to handle it. 

2. throws – When we are throwing an exception in a method and not handling it, then 

we have to use the throws keyword in the method signature to let the caller program 

know the exceptions that might be thrown by the method. The caller method might 

handle these exceptions or propagate them to its caller method using 



the throws keyword. We can provide multiple exceptions in the throws clause, and it 

can be used with the main() method also. 

3. try-catch – We use the try-catch block for exception handling in our code. try is the 

start of the block and catch is at the end of the try block to handle the exceptions. We 

can have multiple catch blocks with a try block. The try-catch block can be nested 

too. The catch block requires a parameter that should be of type Exception. 

4. finally – the finally block is optional and can be used only with a try-catch block. 

Since exception halts the process of execution, we might have some resources open 

that will not get closed, so we can use the finally block. The finally block always gets 

executed, whether an exception occurred or not. 

Example: 

 

ExceptionHandling.java 

package com.journaldev.exceptions; 

import java.io.FileNotFoundException; 

import java.io.IOException; 

public class ExceptionHandling  

{ 

 

 public static void main(String[] args) throws FileNotFoundException, IOException  

{ 

  try  

{ 

   testException(-5); 

   testException(-10); 

  }  

catch(FileNotFoundException e)  

{ 

   e.printStackTrace(); 

  }  

catch(IOException e)  

{ 

   e.printStackTrace(); 



  }  

finally  

{ 

   System.out.println("Releasing resources"); 

  } 

  testException(15); 

 } 

 

 public static void testException(int i) throws FileNotFoundException, IOException  

{ 

  if (i < 0)  

{ 

FileNotFoundExceptionmyException=new FileNotFoundException 

("Negative Integer " + i); 

   throw myException; 

  }  

else if (i > 10)  

{ 

   throw new IOException("Only supported for index 0 to 10"); 

  } 

 } 

} 

 

Explanations: 

 The testException() method is throwing exceptions using the throw keyword. The 

method signature uses the throws keyword to let the caller know the type of 

exceptions it might throw. 

 In the main() method, I am handling exceptions using the try-catch block in 

the main() method. When I am not handling it, I am propagating it to runtime with 

the throws clause in the main() method. 

 The testException(-10) never gets executed because of the exception and then 

the finally block is executed. 



The printStackTrace() is one of the useful methods in the Exception class for debugging 

purposes. 

 

This code will output the following: 

 

 

 

 

Output: 

java.io.FileNotFoundException: Negative Integer -5 

 at 

com.journaldev.exceptions.ExceptionHandling.testException(ExceptionHandling.java:24) 

 at com.journaldev.exceptions.ExceptionHandling.main(ExceptionHandling.java:10) 

Releasing resources 

Exception in thread "main" java.io.IOException: Only supported for index 0 to 10 

 at 

com.journaldev.exceptions.ExceptionHandling.testException(ExceptionHandling.java:27) 

 at com.journaldev.exceptions.ExceptionHandling.main(ExceptionHandling.java:19) 

 

Some important points to note: 

 We can‘t have catch or finally clause without a try statement. 

 A try statement should have either catch block or finally block, it can have both 

blocks. 

 We can‘t write any code between try-catch-finally blocks. 

 We can have multiple catch blocks with a single try statement. 

 try-catch blocks can be nested similar to if-else statements. 

 We can have only one finally block with a try-catch statement. 

Java Exception Hierarchy 

As stated earlier, when an exception is raised an exception object is getting created. Java 

Exceptions are hierarchical and inheritance is used to categorize different types of 

exceptions. Throwable is the parent class of Java Exceptions Hierarchy and it has two child 

objects – Error and Exception. Exceptions are further divided into Checked Exceptions and 



Runtime Exceptions. 

1. Errors: Errors are exceptional scenarios that are out of the scope of application, and 

it‘s not possible to anticipate and recover from them. For example, hardware failure, 

Java virtual machine (JVM) crash, or out-of-memory error. That‘s why we have a 

separate hierarchy of Errors and we should not try to handle these situations. Some of 

the common Errors are OutOfMemoryError and StackOverflowError. 

2. Checked Exceptions: Checked Exceptions are exceptional scenarios that we can 

anticipate in a program and try to recover from it. For 

example, FileNotFoundException. We should catch this exception and provide a 

useful message to the user and log it properly for debugging purposes. 

The Exception is the parent class of all Checked Exceptions. If we are throwing a 

Checked Exception, we must catch it in the same method, or we have to propagate it 

to the caller using the throws keyword. 

3. Runtime Exception: Runtime Exceptions are caused by bad programming. For 

example, trying to retrieve an element from an array. We should check the length of 

the array first before trying to retrieve the element otherwise it might 

throw ArrayIndexOutOfBoundException at runtime. RuntimeException is the parent 

class of all Runtime Exceptions. If we are throwing any Runtime Exception in a 

method, it‘s not required to specify them in the method signature throws clause. 

Runtime exceptions can be avoided with better programming. 

 

Custom Exception 

In Java, we can create our own exceptions that are derived classes of the Exception class. 

Creating our own Exception is known as custom exception or user-defined exception. 

Basically, Java custom exceptions are used to customize the exception according to user 

need. 

 

Consider the example in which InvalidAgeException class extends the Exception class. Using 

the custom exception, we can have your own exception and message. Here, we have passed a 

string to the constructor of superclass i.e. Exception class that can be obtained using 

getMessage() method on the object we have created. 

 



Why use custom exceptions? 

Java exceptions cover almost all the general type of exceptions that may occur in the 

programming. However, we sometimes need to create custom exceptions. 

 

Following are few of the reasons to use custom exceptions: 

To catch and provide specific treatment to a subset of existing Java exceptions. Business 

logic exceptions: These are the exceptions related to business logic and workflow. It is useful 

for the application users or the developers to understand the exact problem. In order to create 

custom exception, we need to extend Exception class that belongs to java.lang package. 

 

Consider the following example, where we create a custom exception named 

WrongFileNameException: 

 

public class WrongFileNameException extends Exception  

{   

public WrongFileNameException(String errorMessage)  

{   

      super(errorMessage);   

     }   

}   

 

Example: 

Let's see a simple example of Java custom exception. In the following code, constructor of 

InvalidAgeException takes a string as an argument. This string is passed to constructor of 

parent class Exception using the super() method. Also the constructor of Exception class can 

be called without using a parameter and calling super() method is not mandatory. 

 

TestCustomException1.java 

// class representing custom exception   

class InvalidAgeException  extends Exception   

{   

    public InvalidAgeException (String str)   

    {   



        // calling the constructor of parent Exception   

        super(str);   

    }   

}   

     

// class that uses custom exception InvalidAgeException   

public class TestCustomException1   

{   

   

     // method to check the age   

static void validate (int age) throws InvalidAgeException 

{     

         if(age < 18) 

{    

           // throw an object of user defined exception   

           throw new InvalidAgeException("age is not valid to vote");     

      }   

         else  

{    

           System.out.println("welcome to vote");    

          }    

      }     

   

    // main method   

    public static void main(String args[])   

    {   

        try   

        {   

            // calling the method    

            validate(13);   

        }   

        catch (InvalidAgeException ex)   

        {   

            System.out.println("Caught the exception");   



     

            // printing the message from InvalidAgeException object   

            System.out.println("Exception occured: " + ex);   

        }   

        System.out.println("rest of the code...");     

    }   

}   

 

Output: 

 

 

File Handling in Java 

In Java, with the help of File Class, we can work with files. This File Class is inside the 

java.io package. The File class can be used by creating an object of the class and then 

specifying the name of the file. 

Why File Handling is Required? 

File Handling is an integral part of any programming language as file handling enables us to 

store the output of any particular program in a file and allows us to perform certain operations 

on it. 

In simple words, file handling means reading and writing data to a file. 

 

// Importing File Class 

import java.io.File;  

class GFG  

{ 

    public static void main(String[] args) 

    { 

  

        // File name specified 

        File obj = new File("myfile.txt"); 



          System.out.println("File Created!"); 

    } 

} 

Output: 

File Created! 

 

File Operations in Java 

In Java, a File is an abstract data type. A named location used to store related information is 

known as a File. There are several File Operations like creating a new File, getting 

information about File, writing into a File, reading from a File and deleting a File. Before 

understanding the File operations, it is required that we should have knowledge of Stream 

and File methods. If you have knowledge about both of them, you can skip it. 

 

Stream 

A series of data is referred to as a stream. In Java, Stream is classified into two types, i.e., 

Byte Stream and Character Stream. 

 

 Byte Stream: Byte Stream is mainly involved with byte data. A file handling process 

with a byte stream is a process in which an input is provided and executed with the 

byte data. 

 

 Character Stream: Character Stream is mainly involved with character data. A file 

handling process with a character stream is a process in which an input is provided 

and executed with the character data. 

 

We can perform the following operation on a file: 

 

 Create a File 

 Get File Information 

 Write to a File 

 Read from a File 

 Delete a File 



 

Create a File 

Create a File operation is performed to create a new file. We use the createNewFile() method 

of file. The createNewFile() method returns true when it successfully creates a new file and 

returns false when the file already exists. Let's take an example of creating a file to 

understand how we can use the createNewFile() method to perform this operation. 

 

Example: 

CreateFile.java 

// Importing File class   

import java.io.File;   

// Importing the IOException class for handling errors   

import java.io.IOException;    

 class CreateFile  

{   

                public static void main(String args[])  

{   

                    try  

   {   

                         // Creating an object of a file   

                         File f0 = new File("D:FileOperationExample.txt");    

                         if (f0.createNewFile())  

{   

                                   System.out.println("File " + f0.getName() + " is created 

successfully.");   

                         }  

else  

{   

                                   System.out.println("File is already exist in the directory.");   

                         }   

                          }  

catch (IOException exception)  

{   

                              System.out.println("An unexpected error is occurred.");   



                              exception.printStackTrace();   

                   }    

        }   

}   

 

Output: 

File Operations in Java 

File Operations in Java 

 

Explanation: In the above code, we import the File and IOException class for performing 

file operation and handling errors, respectively. We create the f0 object of the File class and 

specify the location of the directory where we want to create a file. In the try block, we call 

the createNewFile() method through the f0 object to create a new file in the specified 

location. If the method returns false, it will jump to the else section. If there is any error, it 

gets handled in the catch block. 

 

Write to a File 

The next operation which we can perform on a file is "writing into a file". In order to write 

data into a file, we will use the FileWriter class and its write() method together. We need to 

close the stream using the close() method to retrieve the allocated resources. Let's take an 

example to understand how we can write data into a file. 

 

Example: 

WriteToFile.java 

 

// Importing the FileWriter class   

import java.io.FileWriter;       

// Importing the IOException class for handling errors   

import java.io.IOException;    

class WriteToFile  

{   

 

public static void main(String[] args)  

{   



      try  

{   

           FileWriter fwrite = new FileWriter("D:FileOperationExample.txt");   

           // writing the content into the FileOperationExample.txt file   

          fwrite.write("A named location used to store related information is 

referred   to as a File.");    

           // Closing the stream   

           fwrite.close();    

           System.out.println("Content is successfully wrote to the file.");   

      }  

catch (IOException e)  

{   

           System.out.println("Unexpected error occurred");   

           e.printStackTrace();   

          }   

    }   

}   

 

Output: 

File Operations in Java 

File Operations in Java 

 

Explanation: In the above code, we import the java.io.FileWriter and java.io.IOException 

classes. We create a class WriteToFile, and in its main method, we use the try-catch block. In 

the try section, we create an instance of the FileWriter class, i.e., fwrite. We call the write 

method of the FileWriter class and pass the content to that function which we want to write. 

After that, we call the close() method of the FileWriter class to close the file stream. After 

writing the content and closing the stream, we print a custom message. If we get any error in 

the try section, it jumps to the catch block. In the catch block, we handle the IOException and 

print a custom message. 

Read from a File 

The next operation which we can perform on a file is "read from a file". In order to write data 



into a file, we will use the Scanner class. Here, we need to close the stream using the close() 

method. We will create an instance of the Scanner class and use the hasNextLine() method 

nextLine() method to get data from the file. Let's take an example to understand how we can 

read data from a file. 

 

Example:  

ReadFromFile.java 

// Importing the File class   

import java.io.File;    

// Importing FileNotFoundException class for handling errors   

import java.io.FileNotFoundException;    

// Importing the Scanner class for reading text files   

import java.util.Scanner;    

class ReadFromFile  

{   

     public static void main(String[] args)  

{   

          try  

{   

              // Create f1 object of the file to read data   

              File f1 = new File("D:FileOperationExample.txt");     

              Scanner dataReader = new Scanner(f1);   

              while (dataReader.hasNextLine()) {   

                  String fileData = dataReader.nextLine();   

                  System.out.println(fileData);   

             }   

            dataReader.close();   

        }  

catch (FileNotFoundException exception)  

{   

             System.out.println("Unexcpected error occurred!");   

             exception.printStackTrace();   

         }   

    }   



}   

 

Output: 

File Operations in Java 

 

Explanation: In the above code, we import the "java.util.Scannner", "java.io.File" and 

"java.io.IOException" classes. We create a class ReadFromFile, and in its main method, we 

use the try-catch block. In the try section, we create an instance of both the Scanner and the 

File classes. We pass the File class object to the Scanner class object and then iterate the 

scanner class object using the "While" loop and print each line of the file. We also need to 

close the scanner class object, so we use the close() function. If we get any error in the try 

section, it jumps to the catch block. In the catch block, we handle the IOException and print a 

custom message. 

 

Delete a File: 

The next operation which we can perform on a file is "deleting a file". In order to delete a 

file, we will use the delete() method of the file. We don't need to close the stream using the 

close() method because for deleting a file, we neither use the FileWriter class nor the Scanner 

class. Let's take an example to understand how we can write data into a file. 

Example: 

DeleteFile.java 

// Importing the File class   

import java.io.File;    

class DeleteFile  

{   

public static void main(String[] args)  

{    

      File f0 = new File("D:FileOperationExample.txt");    

      if (f0.delete())  

{    

         System.out.println(f0.getName()+ " file is deleted successfully.");   

      }  

else  

{   



         System.out.println("Unexpected error found in deletion of the file.");   

      }    

   }    

}  

  

Output: 

File Operations in Java 

 

Explanation: In the above code, we import the File class and create a class DeleteFile. In the 

main() method of the class, we create f0 object of the file which we want to delete. In the if 

statement, we call the delete() method of the file using the f0 object. If the delete() method 

returns true, we print the success custom message. Otherwise, it jumps to the else section 

where we print the unsuccessful custom message. 

 

 

 

File Streams in Java 

 

In Java, a sequence of data is known as a stream. This concept is used to perform I/O 

operations on a file. You can create a file stream from the filename, a File object, or a 

FileDescriptor. object. Use file streams to read data from or write data to files on the file 

system.  

 

There are two types of streams in java: 

1. File Input Stream 

2. File Output Stream 

 

1. File Input Stream: 

The Java InputStream class is the superclass of all input streams. The input stream is used to 

read data from numerous input devices like the keyboard, network, etc. InputStream is an 

abstract class, and because of this, it is not useful by itself. However, its subclasses are used 

to read data. There are several subclasses of the InputStream class, which are as follows: 

 



 AudioInputStream 

 ByteArrayInputStream 

 FileInputStream 

 FilterInputStream 

 StringBufferInputStream 

 ObjectInputStream 

 

Creating an Input Stream: 

 

Syntax:  

// Creating an InputStream 

InputStream obj = new FileInputStream();  

Here, an input stream is created using FileInputStream.  

 

Note: We can create an input stream from other subclasses as well as InputStream. 

 

Methods of Input Stream: 

1 read()   Reads one byte of data from the input stream. 

2 read(byte[] array)() Reads byte from the stream and stores that byte in the specified 

     array. 

3 mark()   It marks the position in the input stream until the data has been 

read. 

4 available()  Returns the number of bytes available in the input stream. 

5 markSupported() It checks if the mark() method and the reset() method is 

supported      in the stream. 

6 reset()   Returns the control to the point where the mark was set inside 

the     stream. 

7 skips()    Skips and removes a particular number of bytes from the input

     stream. 

8 close()   Closes the input stream. 

 



2. Output Stream: 

The output stream is used to write data to numerous output devices like the monitor, file, etc. 

OutputStream is an abstract superclass that represents an output stream. OutputStream is an 

abstract class and because of this, it is not useful by itself. However, its subclasses are used to 

write data. There are several subclasses of the OutputStream class which are as follows: 

 

 ByteArrayOutputStream 

 FileOutputStream 

 StringBufferOutputStream 

 ObjectOutputStream 

 DataOutputStream 

 PrintStream 

 

Creating an Output Stream 

 

Syntax: 

// Creating an OutputStream 

OutputStream obj = new FileOutputStream(); 

Here, an output stream is created using FileOutputStream. 

 

Note: We can create an output stream from other subclasses as well as OutputStream. 

 

Methods of Output Stream: 

1. write()  Writes the specified byte to the output stream. 

2. write(byte[] array) Writes the bytes which are inside a specific array to the output stream. 

3. close()  Closes the output stream. 

4. flush()  Forces to write all the data present in an output stream to the 

destination. 

 


