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PREFACE 

 Jagat Guru Nanak Dev Punjab State Open University, Patiala was established in 

Decembas 2019 by Act 19 of the Legislature of State of Punjab. It is the first and only Open 

Universit of the State, entrusted with the responsibility of making higher education accessible 

to all especially to those sections of society who do not have the means, time or opportunity 

to pursue regular education. 

 In keeping with the nature of an Open University, this University provides a flexible 

education system to suit every need. The time given to complete a programme is double the 

duration of a regular mode programme. Well-designed study material has been prepared in 

consultation with experts in their respective fields. 

 The University offers programmes which have been designed to provide relevant, 

skill-based and employability-enhancing education. The study material provided in this 

booklet is self instructional, with self-assessment exercises, and recommendations for further 

readings. The syllabus has been divided in sections, and provided as units for simplification. 

 The Learner Support Centres/Study Centres are located in the Government and 

Government aided colleges of Punjab, to enable students to make use of reading facilities, 

and for curriculum-based counselling and practicals. We, at the University, welcome you to 

be a part of this institution of knowledge. 

 

Prof. G. S. Batra, 
 Dean Academic Affairs 
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INSTRUCTIONS FOR THE PAPER SETTER/EXAMINER  

1. The syllabus prescribed should be strictly adhered to.  
2. The question paper will consist of three sections: A, B, and C. Sections A and B will 

have four questions from the respective sections of the syllabus and will carry 10 
marks each. The candidates will attempt two questions from each section.  

3. Section C will have fifteen short answer questions covering the entire syllabus. Each 
question will carry 3 marks. Candidates will attempt any ten questions from this 
section. 

4. The examiner shall give a clear instruction to the candidates to attempt questions only 
at one place and only once. Second or subsequent attempts, unless the earlier ones 
have been crossed out, shall not be evaluated. 

5. The duration of each paper will be three hours. 
  

INSTRUCTIONS FOR THE CANDIDATES 
Candidates are required to attempt any two questions each from the sections A and B of the 
question paper and any ten short q questions from Section C.  They have to attempt questions 
only at one place and only once. Second or subsequent attempts, unless the earlier ones have 
been crossed out, shall not be evaluated. 
 
Course: Introduction to Data Science   
Course Code: BCA-3-04T 
Course Outcomes (COs) 
After the completion of this course, the students will be able to: 
CO1 Understand tools and techniques to analyze and extract insights from data received 

from different data sources such as social media, IoT devices, and sensors.  
CO2 Understand the general techniques and frameworks that can be used to handle special 

types of data, such as acoustic, image, sensor, and network data 
CO3 Apply mathematical or logical operations to the data to derive new insights. 
CO4 Apply tools for understanding complex data structures and relationships.  
CO5 Explore various applications of data science in the field of business, energy, health 

care, biotechnology, manufacturing, telecommunication, pharmaceuticals etc. 

 

 

SECTION-A 
Unit I: Data Science: A discipline, Landscape-Data to Data science, Data Growth-issues and 
challenges, data science process. foundations of data science. Messy data, Anomalies and 



artefacts in datasets. Cleaning data. 
 
Unit II: Introduction data acquisition: Structured Vs Unstructured data, data preprocessing 
techniques including data cleaning, selection, integration, transformation and reduction, data 
mining, interpretation. 
 
Unit III: Representation of Data: Special types-acoustic, image, sensor and network data. 
Problems when handling large data – General techniques for handling large data, Distributing 
data storage and processing with Frameworks. 
 
Unit IV: Data Science Ethics:  Doing good data science, Owners of the data, valuing 
different aspects of privacy, getting informed consent, the five Cs, diversity, inclusion, future 
trends. 
 

SECTION-B 
 

Unit V: Data Wrangling Combining and Merging Data Sets: Reshaping and Pivoting, 
Data Transformation, String manipulations, Regular Expressions. 
 
Unit VI: Data Aggregation and Group Operations: Group by Mechanics, Data 
Aggregation, Group Wise Operations, Transformations, Pivot Tables, Cross Tabulations, 
Date and Time data types. 
 
Unit VII: Data Modeling: Basics of Generative modeling and Predictive modeling. Charts-
histograms, scatter plots, time series plots etc. Graphs, 3D Visualization and Presentation. 
 
Unit VIII: Applications of Data Science: Business, Insurance, Energy, Health care, 
Biotechnology, Manufacturing, Utilities, Telecommunication, Travel, Governance, Gaming, 
Pharmaceuticals, Geospatial analytics and modeling 
 
Reference Books: 
 

 Sinan Ozdemir, “Principles of Data Science”, Packt Publishing, 2016. 

 Joel Grus, “Data Science from Scratch”, O’Reilly, 2016. 

 Foster Provost & Tom Fawcett, “Data Science for Business”, O’Reilly, 2013. 

 Roger D. Peng & Elizabeth Matsui, “The Art of Data Science”, Lean Publishing, 

2015. 
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1.0 OBJECTIVES 
 

1. Introduction to Data Science 
2. Familiarize with the issues and challenges in Data Growth 
3. Familiarize with data Science Process 
4. Familiarize with the concepts of data like clean and messy data, data artifacts and 

anomalies in data. 
 

1.1 DATA SCIENCE-A DISCIPLINE 

Data Science is a blend of various tools, algorithms and machine learning principles with the 
goal to discover hidden patterns from raw data. It is related to data mining, machine learning 
and Big Data It is an area that manages, manipulates, extracts, and interprets knowledge from 
tremendous amount of data. Data science (DS) is a multidisciplinary field of study with a 
goal to address the challenges in big data. Big Data has given rise to Data Science and is a 
therefore, a multidisciplinary field of study with goal to address the challenges in big data. 
Following are some main reasons for using data science: 

 Data Science is useful in making the huge amount of raw and unstructured data into 

meaningful and useful data. 

 Major companies like Google, Amazon, Netflix, etc, are using data science to handle  

the huge data, to improve on the  better customer experience by being able to analyze 

and make predictions about trends and customer interests. 

 Data science is used in almost every domain, therefore increasing the demand of a 

data science expert in each domain, leading to increased employability. 

1.2 DATA TO DATA SCIENCE 
The growth of data has been seen since 2010, due to the growth in the number of data 
generating devices like smart phones, wearables, Internet of things, etc. The availability of 
more data publicly from social media sites like Facebook, YouTube, twitter etc, business 
transactions, sensors, audio, video, photos etc.  This enormous growth of data led to the 
concept of Big data, which is a term used for collection of large and complex data sets. As the 
data has increased, so did the need for its storage. Until 2010, the main focus was building 
framework and solutions to store data, which was successfully solved by HADOOP and other 
frameworks. In the present time, it has become difficult to process this large and complex 
data using traditional data management techniques such as, for example, the RDBMS 
(relational database management systems). This rise in the use of data, sparked the use of 
Data Science. Data science makes this possible, as it is a multidisciplinary study of data 
collection for analysis, prediction, learning and prevention. Data Science involves using 
methods to analyse massive amounts of data and extract the knowledge from the raw data and 
process it using scientific methods, algorithms and computer programming. Data science is 
an exciting, interdisciplinary field that is revolutionizing the way companies approach every 
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facet of their business.  It helps in discovering hidden patterns from the raw data with the help 
of  mathematics, statistics and  data analysis. 

1.3 DATA GROWTH ISSUES AND CHALLENGES 
During the last decade, the most challenging problem the world envisaged is the big data 
problem[3].The  data is growing at a much faster rate than computational speeds. Social 
activities, business transactions, sales figures, scientific experiments, biological explorations 
along with the sensor devices, customer logs are among the  contributors of voluminous data 
which is referred as Big data. Big data is beneficial to the society and business but at the 
same time, it brings challenges like data quality, storage, lack of data scientists and data 
analysts. Big Data is characterized by five V‘s namely volume, variety, velocity, veracity and 
value. Consequently, the challenges these characteristics bring are being seen in data capture, 
curation, storage, search, sharing, transfer, and visualization. Each of the characteristic og 
the big data is a challenge in itself. The following section discusses the various characteristics 
of big data: 

i. Volume refers to the enormous size of data. Big data refers to data volumes in the 
range of exabytes and beyond e.g. In the year 2016, the estimated global mobile 
traffic was 6.2 Exabytes (6.2 billion GB) per month. Also, by the year 2020 we will 
have almost 40000 Exabytes of data. One of the most pressing challenges of Big 
Data is storing all these huge sets of data properly. The amount of data being stored in 
data centers and databases of companies is increasing rapidly. As these data sets grow 
exponentially with time, which gets extremely difficult to handle.Most of the data is 
unstructured and comes from documents, videos, audios, text files and other sources. 
Such volumes exceed the capacity of current on-line storage systems and processing 
systems.  Traditional database systems is not able to capture, store and analyse this 
large amount of data. Therefore, as the volume of the data increases, storage becomes 
an issue. To handle large volume of data, techniques 
like  compression, tiering, and deduplication are being used. Compression is used for 
reducing the number of bits in the data, thus reducing its overall size. Deduplication is 
the process of removing duplicate and unwanted data from a data set.Storage 
solutions have been provided by HADOOP framework, but represent long term 
challenges that require research and new paradigms. 
 

ii. Velocity refers to the high speed of accumulation of data. There is a massive and 
continuous flow of data from sources like machines, networks, social media, mobile 
phones etc. This determines the potential of data that how fast the data is generated 
and processed to meet the demands e.g. there are more than 3.5 billion searches per 
day are made on Google.  FaceBook users are also increasing by 22% (approx.) year 
by year.  Data is streaming in, at unprecedented speed and must be dealt with in a 
timely manner. RFID tags, sensors and smart metering are driving the need to deal 
with torrents of data in near-real time. The data has to be available at the right time to 
make business decisions accurately. Reacting quickly enough to deal with data 
velocity is a challenge for most organizations. 
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iii. Variety refers to nature of data. Data is available in varied formats and heterogenous 
sources. It can be structured, semi-structured and unstructured data. It is a challenge to 
find ways of governing, merging and managing these diverse forms of data. 
 

 Structured Data: The data that is organized  and has a formal 
structure  such as in a row, column form at like ina excel sheet or 
relational tables is called structured data. This data can be stored in a 
relational database. Some examples of structured data are educational 
records, health records, bank statements, stock information, and 
geolocations etc. 

 Semi-structured Data: This kind of data is semi organized i.e. it has 
no formal structure; it has features of both structured and unstructured 
data. It has a flexible structure, which means that data of any structure 
can be captured without making changes to the database schema or 
code. The functionality of the database is not affected by adding or 
removing data.While semi-structured data increases flexibility, the lack 
of a fixed schema also creates challenges in storage and indexing. The 
challenges increase as the volume of such data increases.Log files are 
categorized as semi-structured data. Other examples include emails, 
zipped files and webpages etc.  

 Unstructured Data: This kind of data does not map to any standard. It 
cannot be fit into any standard fields. E.g. the data on social media 
platforms is unstructured data. It may contain both images and videos. 
Other examples of unstructured data are photos, video and audio files, 
social media content, satellite imagery, presentations, PDFs, open-
ended survey responses, websites, data from IoT devices, mobile data, 
weather data, and conversation transcripts.  

 
iv. Veracity here means quality of data, i.e. the extent to which data being used to 

analyse a problem is meaniful. In other words, by veracity, it meant how accurate  the 
data is, or is the data trustworthy to be  used for analysis. It refers to inconsistencies 
and uncertainty in data. The available data may be messy and thus controlling the 
quality and accuracy becomes another challenge. The analysis of a problem is totally 
dependent on the collected data. If the gathered data is inaccurate or incomplete or has 
any missing values, then it may not be able to provide real or valuable insight about 
the problem.Therefore, Veracity refers to the level of trust in the collected data. It is 
big challenge , because the accuracy of the analysis depends on the accuracy of the 
colleceted data. Therefore, it is very important to clean the data to get accurate 
analysis of data. 

 
v. Variability: Variabilty means the extent to which the data varies or in other words it 

is the variation in data. In addition to the increasing velocities and varieties of data, 
data flows can be highly inconsistent with periodic peaks. Big Data is also variable 
because of the multitude of data dimensions resulting from multiple disparate data 
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types and sources e.g.  Data in bulk could create confusion whereas less amount of 
data could convey half or Incomplete Information. The variation in data should be 
minimum i.e the difference between the real and idle situation must be minimum. 
Variability of data can be challenging to manage.  
 

vi. Value: The bulk data having no value is of no good to the company, unless you turn 
it into something useful. Data in itself is of no use or importance but it needs to be 
converted into something valuable to extract information. The ability to transform 
the bulk data into business and make this enormous data of use to business, for 
monetization. It is a challenge to connect and correlate relationships, hierarchies and 
multiple data linkages of the big data. 

Among all the other concerns, the biggest challenge in data science ids the security  issue. 

The most common data security issue is data theft, especially for organizations that 

maintain  sensitive data like financial information or customers‘ personal information. With 

the exponential increase in the usage of internet, enormous data is available , hence, data 

security is the of utmost importance. Hence, companies need to follow the three 

fundamentals of data security namely Confidentiality, Integrity and Accessibility. 

1.4 FOUNDATION OF DATA SCIENCE  
Data science involves using methods to analyse massive amounts of data and extract the 
knowledge it contains. Data Science is an interdisciplinary field focused on extracting 
knowledge from datasets which are large in size, applying the knowledge from data to solve 
problems in a wide range of application domains. Mathematics, statistics, computer science, 
and domain knowledge are the foundations of Data Science. 

The main components of Data Science are given below: 

1. Statistics: To analyse the large amount of numerical data and to find the meaningful 
insights from it, knowledge of statistics is required. Math and statistics expertise is a 
fundamental component of data science that allows practitioners to find meaningful patterns 
in data that yield actionable insights. 

2. Domain Expertise: Data is available and applicable in various domains, therefore domain 
expertise or specialized knowledge of a specific area is required to get best results. There may 
be situations which demand taking the right decision, especially when dealing with messy 
data, it is very important to take the appropriate decision depending on the domain, because 
the same data may be used with a different approach in different domains, hence  best 
approach cannot be known without the appropriate  knowledge of the domain. Domain 
expertise is very important to get accurate results. 
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3. Data engineering: Data engineering is a part of data science, which involves acquiring, 
storing, retrieving, and transforming the data. Data engineering also includes metadata (data 
about data) to the data. 

4. Visualization: Data visualization is meant by representing data in a visual context so that 
people can easily understand the significance of data. Data visualization makes it easy to 
access the huge amount of data in visuals. 

5. Advanced computing: Advanced computing involves designing, writing, debugging, and 
maintaining the source code of computer programs. Machine Learning and Deep learning 
techniques are required for modelling and to make predictions about unforeseen/future data.  

1.5 TOOLS FOR DATA SCIENCE 
Some tools required for data science are as follows: 

 Data Analysis tools: R, Python, Statistics, SAS, Jupyter, R Studio, MATLAB, Excel, 
RapidMiner. 

 Data Warehousing: ETL, SQL, Hadoop, Informatica/Talend, AWS Redshift 
 Data Visualization tools: R, Jupyter, Tableau, Cognos. 

 Machine learning tools: Spark, Mahout, Azure ML studio. 
 

1.6 APPLICATIONS OF DATA SCIENCE 

Data Science is used by most organizations for predictive analysis, price optimization, and 
customer satisfaction. Some areas where data science is being used are Health Care, Finance, 
Security, Airline Routing, Manufacturing, Speech Recognition, Advertisement, Security, 
Fraud detection, Banking, Internet of Things etc. Some use cases are given below: 

 Genomic Data provides deeper understanding of Genetic issues and reactions to 
particular drugs and diseases. 

 Logistics companies like DHL,Fedex have discovered the best time and routes to 
ship cost effectively. 

 Predict employee attrition and understand the variables that influence employee 
turnover. 

 Airline companies can now easily predict flight delays and notify the passengers 
before time. 

 Banks can make better decisions by predict risk analysis, fraud detection and 
better customer management  

Data Science has created a strong foothold in several industries.Some case studies, not 
limited,  where data science has been applied and has shown tremendous results are 
pharmaceuticals industries, manufacturing, production, scientific studies, education, travel etc 
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1.7 DATA SCIENCE PROCESS 

Data Science is the area of study which involves extracting insights from vast amounts of 
data by the use of various scientific methods, algorithms, and processes. Data Science is an 
interdisciplinary field that requires expertise from various fileds like math, statistice, domain 
knowledge, computer programming etc to extract knowledge from structured or unstructured 
data. Data science provides a practical solution to a business problem. The data science life 
cycle is essentially comprises of data collection, data cleaning, exploratory data analysis, 
model building and model deployment. The structured approach to data science helps in 
maximizing the chances of success in a data science project at the lowest cost. The data 
science process typically consists of the following steps: 

 
I. Business Understanding: To prepare a solution model for a problem, 

business understanding is most important. A good model can be designed to 
get a practical solution with the best understanding of the business. The main 
purpose here, is making sure all the stakeholders understand the what, how, 
and why of the project. It involves two main steps namely defining research 
goals and preparing a project charter. 
 
i. Defining Research Goals: It is very essential to understand the 

business goals to be able to define the research goal that states the purpose of 
assignment in a clear and focused manner. The data by for the same can be gathered 
by repeatedly asking questions and enquiring about business expectations, identifying 
the research goals so that everybody knows what to do and can agree on the best 
course of action. The outcome should be a clear research goal, a good understanding 
of the context, well-defined deliverables, and a plan of action with a timetable. This 
information is then best placed in a project charter 

 
ii. Creating Project Charter:  A project charter has the information gathered 

while setting the research goal. The project charter must contain a clear research goal, 
the project mission and context, method for analysis, information about the resources 
required for project completion, proof that the project is achievable, or proof of 
concepts, deliverables and a measure of success and also a timeline for the project. 

This information is useful to make an estimation of the project costs and the 
data and people required for the project to become a success. 

 
II. Data Acquisition or Data Collection or Data Retrieval: This phase involves 

data gathering from various sources like webservers, logs, databases, API‘s and online 

repositories. It involves acquiring data from all the identified internal & external 
sources. One should start with data collection from internal sources. The data may be 
available in many forms ranging from simple text to database records. The data may 
be structured as well as unstructured. Data may be acquired from sources outsise the 
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organization also. Some sources may be available free of cost or some may be paid. 
Data collection is a tiresome and a time-consuming task. 

 
III. Data preparation: Data collection is an error-prone process; in this phase, the 
quality of the data is enhanced and it is prepared for use in subsequent steps. This 
phase consists of three subphases: data cleansing, data integration data 
transformation. 
 
i) Data Cleansing involves cleansing of data collected in the previous phase. It 

involves removing false values from a data source, removing inconsistencies 
across data sources, checking misspelled attributes, missing and duplicate 
values and typing errors, fixing capital letter mismatches as most programming 
languages are case sensitive (e.g India and india), removing redundant white 
spaces, sanity checks (check for impossible values like six-digit phone number 
etc) and outliers (an outlier is an observation that seems to be distant from 
other observations). It should be ensured that most errors are corrected in this 
phase to make the data usable and get better results. 

ii) Data Integration enriches data sources by combining information from 
multiple data sources. Data comes from several sources and in this sub step the 
focus is on integrating these different sources. The data can be combined in the 
following ways: 

 Joining Tables: To combine information  about some data in 
one table with the information available in another table. e.g a table may 
contain information about purchase of a particular product and the other 
table may contain information about people who have purchased that 
product. This can be done using join command in SQL. 

 Appending or Stacking: To add observations from one table to 
another table e.g. a table may contain the information about the purchase 
of a particular product in the year 2000 and the other contains the similar 
data in the year 2001, then appending means to add the records of 2001 
to the table containing the records of 2000. This can be done using the 
union function in SQL. 

 View:  View in SQL can be used to virtually combine two 
tables. This saves on the space requirement 

 Aggregate Functions: Aggregate functions may be used as per 
requirement for combining data. 

 
iii) Data transformation ensures that the data is in a suitable format to be used in 

the project model. Sometimes, the number of variables may have to be 
reduced, It involves modification of data so that it takes a suitable shape. Tools 
like talend and informatica can be used for transformation. 
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IV. Exploratory Data Analysis (EDA) or Data exploration: Data exploration is 
concerned with building a deeper understanding of the data. It involves the 
understanding of how variables interact with each other, the distribution of the data, 
and whether there are outliers. It involves defining and refining the selection of 
feature variables that will be used in model development. This is the most important 
step as it involves understanding of the data which will further be used for 
modelling. Various techniques like visualization, tabulation, clustering, and other 
modelling techniques can be used for exploratory analysis. 

 
V.  Data Modelling or Model building: Model building is an iterative process. In this 

phase, domain knowledge, and insights about the data are used for modelling. It 
involves identifying the data model that best fits the business requirement. For this, 
various machine learning techniques like KNN, Naïve‘s, decision tree etc may be 

applied on data. The model is trained on the data set and the testing of the selected 
model is done. Data modelling can be done using Python, R, SAS.  Most models 
consist of the following main steps: 
 
 

i. Selection of a modelling technique and variables to enter in the model: 
After the exploratory analysis, the variables to be used are known, so in 
this phase, the variables can be used to build the model. A model that 
suits the project requirement has to be chosen.  

ii. Execution of the model: The chosen model has to be implemented by 
coding. Python is most used language for coding as it has many inbuilt 
libraries. 

iii. Diagnosis and model comparison: In this step, the best performing 
model or the model with lowest errors is chosen from among the 
multiple models that are built. 

 
VI.  Presentation and automation:After the data is analysed and a data model built for 

it, in this stage, the results are presented. These results can take many forms, ranging 
from presentations to research reports.  

 
VII. Deployment & Maintenance: Before the final deployment in the production 

environment, testing is done in preproduction environment. After deployment, the 
reports are used for real time analysis. 
 
 

The Data Science life cycle is an Iterative process, there is often a need to step back and 
rework certain findings. If the step 1(business understanding) is performed dedicatedly, 
rework can be prevented. The figure 1 below describes the Data Science model. 
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Fig1source: https://livebook.manning.com/book/introducing-data-science/chapter-2/8 
 

1.8 MESSY DATA 

Data Science has become an indispensable part of many businesses and industries.  The 
backbone of data science is data. There has been a surge in the volume and variety of data, 
but not all the data is usable.The Data that is not in usable form or it is impossible to obtain 
clearly interpretable information from it is called messy data. In other words, incomplete, 
inaccurate, inconsistent, and duplicate data is called dierty or messy data. Some examples 
of messy data are missing data, unstructured data, multiple variables in one column, 
variables stored in wrong places, observations split incorrectly or left together against 
normalization rules, switched columns and rows, extra spaces etc. Data science and its 
algorithms are clean and precise, but the data on which they operate come from the real 
world, are inherently messy i.e. the data which requires some preparation before you can 
use them effectively and it is not easy to find clean data. The quality of insights you derive 
from data depends on the validity of that data, so some preparation is required.  

https://livebook.manning.com/book/introducing-data-science/chapter-2/8
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1.8.1 Types of Messy Data 

i. Duplicate data : A record that shares data with another record in the marketing 

database is called duplicate data. The database may contain a record that is a total 

replica of some record or it may be a partially duplicate. Partial duplicate records 

are the  records that may contain the same name, phone number, email, or address as 

another record, but also contain other non-matching data. Sometimes partial 

duplicates are created by human error — when a customer or member of your team 

enters information manually. When duplicate fields increase, cleansing grows 

exponentially. Duplicate data is a big problem in a data-driven organization. It is 

very important to clean and get rid of duplicates in any data. 

 

ii.  Outdated/Stale Data: The information that is incorrect, incomplete, or no longer in 

use is referred as Outdated or stale data. Outdata is worst than having no data. It is 

very important to have updated data for decision making.Outdated data can have a 

very impact on the decisions of an organization.  
 

iii. Incomplete Data: Incomplete dataanother kind of very common occurring dirty 
data. A record that lacks key fields on master data records such as industry type, 
title or last names, etc. which are useful for business is considered incomplete. For 
example imagine trying to sell geolocation software to a prospect who is located at 
―N/A‖. 
 
 

iv.  Inaccurate/Incorrect Data: Collecting information about your customers helps in 
better understanding them and making informed decisions to satisfy them. This can 
be only possible if data is collected properly, completely, and accurately and can 
also lead to costly blunders. 
Incorrect data: It occurs when the field values are generated outside of the valid 
range of values. For example, when filling a month field the range should 
encompass ranges from 1 to 12, or a zip code in an Indian city should be maximum 
6 digits only. 
Inaccurate data: There are many instances where the data on a field is correct but 
inaccurate considering the business context. Inaccurate data can lead to costly 
interruptions. For example, errors in a customer‘s address can lead to the delivery of 

the product at the wrong location even though the address on which it was delivered 
is correct. 

v.  Inconsistent Data: Inconsistent data are also known as data redundancy is when 
the same field value is stored in different places, which leads to inconsistency. For 
example, companies have customer information on multiple systems, and data is not 
kept in sync. The problem with inconsistent data can be explained, for example, if 
you want to target all ―Vice President‖ for an upcoming email marketing campaign. 

Since ‗V.P‘ ‗v.p‘ ‗VP‘ & ‗Vice Pres‘ all mean the same thing, however, these would 

only be included in the campaign if all these variations are included in the campaign 
list. Inconsistent data hinders analytics and makes segmentation difficult when you 
have to consider all variables of the same title, industry, etc. 
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1.9 ANOMALIES AND ARTEFACTS IN DATASETS 

1.9.1 Anomaly is a deviation in data from the expected value for a metric at a given point 
in time. An unexpected change within these data patterns, or an event that does not conform 
to the expected data pattern, is considered an anomaly. Anomaly detection is any process 
that finds the outliers (items that do not belong to the dataset) of a dataset.  The term 
anomaly is also referred to as outlier. Outliers are the data objects that stand out among 
other objects in the data set and do not conform to the normal behaviour in a data set. 
Anomaly detection is a technique for finding an unusual point or pattern in a given set. 
Anomaly detection is a data science application that combines multiple data science tasks 
like classification, regression, and clustering.There are three kinds of anomalies namely: 
point anomaly, contextual anomaly, and collective anomalies.  

 Point Anomaly: If a single instance in a given dataset is different from others with 
respect to its attributes, it is called a point anomaly i.e. when a single instance of 
data is anomalous, it deviates largely from the rest of the set e.g. detecting credit 
card fraud based on ―amount spent.‖ 

 Contextual anomaly: If the data is anomalous in some context, it is called 
contextual anomaly. This type of anomaly is common in time-series data. In the 
absence of a context, all the data points look normal. E.g. if the context of the 
temperature is recorder in December and a high temperature reading is seen in 
December month, which is an abnormal phenomenon.  

 Collective anomalies can be formed due to a combination of many instances i.e. a 
set of data instances collectively helps in detecting anomalies. For example, 
sequence data in network log or an attempt to copy data form a remote machine to a 
local host unexpectedly, an anomaly that would be flagged as a potential cyber-
attack. 

Anomaly detection refers to the problem of finding patterns in data that do not conform to 
expected behaviour. It is a technique for finding an unusual point or pattern in a given set. 
These nonconforming patterns are often referred to as anomalies, outliers, discordant 
observations, exceptions, aberrations, surprises, peculiarities, or contaminants in different 
application domains. Anomaly detection is commonly used for: 

 Data cleaning 
 Intrusion detection 
 Fraud detection 
 Systems health monitoring 
 Event detection in sensor networks 
 Ecosystem disturbances 
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1.9.2 Artifact It is a data flaw caused by equipment, techniques or conditions. Common 
sources of data flaws include hardware or software errors, conditions such as 
electromagnetic interference and flawed designs such as an algorithm prone to 
miscalculations. Some common data artifacts are: 

 Digital Artifacts: Flaws or errors in digital media, documents and data records 
caused by data processing  e.g a distorted camera recording. 

 Visual Artifacts: Flaws in visualizations such as user interfaces. 
 Compression Artifacts: Flaws in data due to lossy compression. 
 Statistical Artifacts: Flaw such as a bias in statistical data. 
 Sonic Artifacts: Unwanted sound in a recording.  

 
1.10 CLEANING DATA 

Data cleaning is a key part of data science. Clean data increases overall productivity and 

allows for the highest quality information in decision-making. Data cleaning is the process of 

fixing or removing incorrect, corrupted, incorrectly formatted, duplicate, or incomplete data 

within a dataset. If data is messy, the outcomes and algorithms are unreliable. It can lead to 

poor business strategy and decision-making. The data can have many irrelevant and missing 

parts. To handle this part, data cleaning is done. It involves handling of missing data, noisy 

data etc. During cleansing, missing values may either be filled or removed depending on the 

data. There are many other types of errors that may need to be cleaned in dirty data. These 

errors can include:  

 

 missing data 

 unstructured data 

 multiple variables in one column 

 variables stored in the wrong places 

 observations split incorrectly or left together against normalization rules 

 switched columns and rows 

 extra spaces  

 

1.10.1 Challenges with Dirty Data: 

 Time-consuming: Dirty data needs to be cleaned to make is usable, analysts  spend 

up to 80% of the total analysis process cleaning dirty data. It is not only time 

consuming but expensive also. 

 Technical Constraints: In the case of more advanced data projects, organizations 

must hire costly data scientists or data engineers with advanced programming skills—

https://www.trifacta.com/blog/structured-unstructured-data/
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only to have them spend the majority of their time cleaning data. Programming 

languages are effective in wrangling big, complex data, but they limit data preparation 

to a small group of people, which creates a big bottleneck. 
 It’s error-prone: Datasets need to be prepared effectively as well as efficiently. 

There is a possibility of errors to remain  until  reviewed by another person it‘s often 

difficult (or near impossible) for others to revise the data cleaning work.  

 
1.10.2  Data Cleansing Techniques  
The choice of data cleaning techniques relies on a lot of factors like the  kind of data being 
dealth with. Whether the data is  numeric values or strings. Multiple  techniques may be used 
for cleansing different kinds of data to get better results. Some dat cleansing activities are:   
 

 Removing Irrelevant Values 
The first and foremost thing  is to remove irrelevant data from your system. Any useless or 
irrelevant data is the onethat is not required for analysis. It might not fit the context of the 
problem. E.g to measure the average age of sales staff, their email address are not required 
and are hence considered irrelevant or useless in this context. 
 

 Remove Duplicate Values 
Duplicate data only increases the volume of data  and tends to waste  time. Duplicate values 
could be present in your system for several reasons like  you  may have combined the data of 
multiple sources or, perhaps the person submitting the data repeated a value 
mistakingly. Some user clicked twice on ‗enter‘ when they were filling an online form. This 
duplicate data should be removed as soon as it is found.  
 

 Avoid Typos  
Typos are a result of human error. They are essential to fix because models treat different 
values differently. Strings rely a lot on their spellings and cases. Another error similar to 
typos is of strings‘ size. They might need to be padded to maintain the format. For example, a 
dataset might require to have 5-digit numbers only. So if you have any value which only has 
four digits such as ‗1234‘, zero must be added in the beginning to increase its number of 
digits as ‗01234‘. An additional error with strings is of white spaces. Extra white spaces 
should be removed.  
 

 Convert Data Types 
Data types should be uniform across the dataset. The following things should be kept in mind 
when  converting data types: 
 

 Keep numeric values as numerics 
 Check whether a numeric is a string or not. If you entered it as a string, it 

would be incorrect.  
 If you can‘t convert a specific data value, you should enter ‗NA value‘ or 

something of this sort.  
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  Take Care of Missing Values 

Missing values can lead to wrong interpretations. Therefore, missing values should be 
handled well. A particular column in your dataset may have too many missing values. The 
decision whether to delete the misiing values or to fill them is based on the domain 
knowledge. Sometimes, it is recommended to get rid of missing values, but sometimes it is 
not advisable depending upon the problem situation, but  missing values shouldn‘t be ignored 
because they will contaminate data, and hamper the accuracy of the results. There are 
multiple ways to deal with missing values: 
 
Imputing Missing Values: means assuming the approximate value. Methods like linear 
regression or median can be used to calculate the missing value. Another method to impute 
missing values is to copy the data from a similar dataset. This method is called ‗Hot-deck 
imputation‘.  
 
Highlighting Missing Values: Imputation isn‘t always the best measure to take care of 

missing values. Many experts argue that it only leads to more mixed results as they are not 
‗real‘. So, you can take another approach and inform the model that the data is missing. The 
missing valurs can be highlighted or flagged. For example, your records may not have many 
answers to a specific question of your survey because your customer didn‘t want to answer it 

in the first place.  If the missing value is numeric, you can use 0. Just make sure that you 
ignore these values during statistical analysis. On the other hand, if the missing value is a 
categorical value, you can fill ‗missing‘.  
 
 
1.11 SUMMARY 
This chapter introduces the concept of data science as a discipline. The various issues faced 
due to the growth in data are discussed. The importance of cleaning data and the anomalies 
found in data are also discussed. 

1.12 PRACTICE QUESTIONS 

Q1. What are the foundations of data science? 

Q2. Discuss the areas where data science is applicable? 

Q3. Discuss the various challenges due to growth in data. 

Q4. Explain briefly the data Science Process. 

Q5. Define Messy data. 
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2.0 OBJECTIVES 

1. Introduction to Data Acquisition 

2. To familiarize with the different types of data 

3. To provide the concept of data pre-processing and familiarize with the various 
reprocessing techniques 

4. To familiarize with the concept of data mining and data interpretation 

2.1 INTRODUCTION TO DATA ACQUISITION 
Data acquisition or data collection is the process of acquiring, collecting, extracting, and 
storing the voluminous amount of data which may be in the structured or unstructured form 
like text, video, audio, XML files, records, or other image files. In other words, the process 
of gathering data and making it useful by techniques like filtering and cleaning as per the 
business requirement is termed as data acquisition. It is the most important step or we can 
say it is the initial step to be performed before beginning of the process of big data analysis. 
The data must be acquired from different valid sources. It must be suitable to the problem 
in hand. It is also important to acquire up to date data to get accurate results. 

The actual data is then  divided mainly into two types known as: 
 

i. Primary data 
ii. Secondary data 

 

 

i. Primary Data: 

The data which is raw, original, and is extracted directly from the official sources is known 
as primary data. This type of data is collected directly by performing techniques such as 
questionnaires, interviews, and surveys. The data collected must be according to the 
demand and requirements of the problem on which analysis is performed so as to get the 
accurate analysis of the problem.  Some methods of collecting primary data: 
 

a) Interview method 
 

The data collected during this process is through interviewing the target audience by a 
person called interviewer and the person who answers the interview is known as the 
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interviewee. The answers to the questions asked are noted down in the form of notes, audio, 
or video and this data is stored for processing. This data can be both structured and 
unstructured like personal interviews or formal interviews through telephone, face to face, 
email, etc. 

b) Survey method 

The survey method is the process of research where a list of relevant questions are asked 
and answers are noted down in the form of text, audio, or video. The survey method can be 
obtained in both online and offline mode like through website forms and email. Then that 
survey answers are stored for analyzing data. Examples are online surveys or surveys 
through social media polls. 

c)  Observation method 

In this method, the researcher keenly observes the behavior and practices of the target 
audience using some data collecting tool and stores the observed data in the form of text, 
audio, video, or any raw formats. In this method, the data is collected directly by posting a 
few questions on the participants. For example, observing a group of customers and their 
behavior towards the products. The data obtained will be sent for processing. 

4. Experimental method: 
The experimental method is the process of collecting data through performing experiments, 
research, and investigation. The most frequently used experiment methods are CRD, RBD, 
LSD, FD. 

 CRD- Completely Randomized design is a simple experimental design used in 
data analytics which is based on randomization and replication. It is mostly used 
for comparing the experiments. 

 RBD- Randomized Block Design is an experimental design in which the 
experiment is divided into small units called blocks. Random experiments are 
performed on each of the blocks and results are drawn using a technique known 
as analysis of variance (ANOVA). RBD was originated from the agriculture 
sector. 

 LSD – Latin Square Design is an experimental design that is similar to CRD 
and RBD blocks but contains rows and columns. It is an arrangement of NxN 
squares with an equal amount of rows and columns which contain letters that 
occurs only once in a row. Hence the differences can be easily found with fewer 
errors in the experiment. Sudoku puzzle is an example of a Latin square design. 

 FD- Factorial design is an experimental design where each experiment has two 
factors each with possible values and on performing trail other combinational 
factors are derived. 

 
ii. Secondary Data 

 
   Secondary data is the data which has already been collected and reused again for 
some valid purpose. This type of data is previously recorded from primary data and it has 
two types of sources named internal source and external source. 

 Internal source 
These types of data can easily be found within the organization such as market record, a 
sales record, transactions, customer data, accounting resources, etc. The cost and time 
consumption is less in obtaining internal sources. 
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 External source 
The data which can‘t be found at internal organizations and can be gained through external 

third party resources is external source data. The cost and time consumption is more 
because this contains a huge amount of data. Examples of external sources are Government 
publications, news publications, Registrar General of India, planning commission, 
international labor bureau, syndicate services, and other non-governmental publications. 

Other sources: 
 Sensors data: With the advancement of IoT devices, the sensors of these 

devices collect data which can be used for sensor data analytics to track the 
performance and usage of products. 

 Satellites data: Satellites collect a lot of images and data in terabytes on daily 
basis through surveillance cameras which can be used to collect useful 
information. 

 

The characteristics of big data namely volume, velocity, variety, and value and very 
important for the acquisition of data. In data science, there is a variety of data that we need 
to deal with. The data is majorly characterized as:   

 Structured Data: The data which is available in some stand format is called 
structured data. Structured data is organized data. It is stored in the row and column 
structure like in a relational database and excel sheets. Some examples of structured 
data are names, numbers, geolocations, addresses etc. 
 

 Unstructured Data: This data is unorganized data. There is no particular format for 
unstructured data. It is available in a variety of formats like texts, pictures, videos 
etc. Unstructured data is more difficult to search and requires processing to become 
understandable. 
 

 Semi- Structured data: This data is basically a semi-organised data. It is generally 
a form of data that do not conform to the formal structure of data. Log files are the 
examples of this type of data. 

 
2.2 DATA PREPROCESSING AND TECHNIQUES 

 
The data acquired needs to be preprocessed to make it usable. The raw data may be 
inconsistent, erroneous, incomplete and not in the required format. These issues need to be 
resolved to make the data usable. Data Preprocessing is a collaborative term used for the 
activities involved in transforming the real-world data or raw data into a usable form to make 
it more valuable and to get it in the required format. The preprocessed data is cleaner and 
more valuable, and hence used as final training set. Data preprocessing is a very essential 
step, as more clean and inconsistent data we get, better shall be the final output. In other 
words, data processing improves the quality of data. The huge size of data collected from 
heterogenous sources leads to anomalous data. Data preprocessing has become a vital and 
most fundamental step considering the fact that high quality data leads to better models and 
predictions. Data preprocessing techniques are majorly categorized in the following methods: 
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i. Data Cleaning 
ii. Data Integration 
iii. Data Transformation 
iv. Data Reduction 

2.2.1 Data Cleaning involves removing duplicate data, filling missing values, identifying 
outliers, smoothening noise and remove data inconsistencies. The following steps 
must be followed for cleaning data: 

 Remove duplicate or irrelevant observations 
It is very important to remove inconsistencies in dataset like removing unwanted 
observations including duplicate and irrelevant data entries. Duplicate values may be 
caused at the time of data collection e.g. the names of the countries may have 
repeated valued like NewZealand and New Zealand; Pakistan and pakistan. 
Inconsistencies in capitalizations and trailing white spaces are very common in text 
data, The data set can be cleaned using available function in Python or R. functions 
like unique, sort, lower(), upper(), strip() can be used to handle inconsistencies 

 Fix structural errors: Structural errors are when you measure or transfer data and 
notice strange naming conventions, typos, or incorrect capitalization. These 
inconsistencies can cause mislabelled categories or classes. For example, you may 
find ―N/A‖ and ―Not Applicable‖ both appear, but they should be analysed as the 
same category. Set the single date format in case there are multiple date formats in a 
single column. 

 Filter unwanted outliers is essential to improve the performance of the data. 
Outliers are the data objects that stand out among other objects in the data set and do 
not conform to the normal behaviour in a data set.  If an outlier is found to be 
irrelevant it must be handled. Some techniques to remove outliers from huge 
datasets are: boxplots,Z-score and interquantile range. The outliers need to be 
handled as per the problem. They can be either removed or the outlier is capped or 
else it can be imputed. 

 Handle missing data: During analysis of data, it is important to understand why the 
missing values exist. Whether the missing value exist because they were not 
recorded or they imply that data does not exist for the missing values. Missing data 
may be handled by using the following ways: 

i) In case, the values were not recorded, it becomes essential to fill up the 
values by guessing based on the other values in that column and row. This is called 
imputation. E.g. if a value is missing for gender, it is understood that the value was 
not recorded, so we need to analyse data and give it a value, we cannot leave the 
value blank in this case. Therefore, you can input missing values based on other 
observations; but there is a chance of losing integrity of the data because these 
values are being filled based on assumptions and not actual observations. 



21 
 

ii) If a value is missing because it doesn't exist e.g. the height of the 
oldest child of someone who doesn't have any children. In this case, it would make 
more sense to either leave it empty or to add a third value like NA or NaN. The NA 
or NaN values should be replaced with 0. Panda's fillna() function to fill in missing 
values in a data frame can be used.  

iii) In case, it is not possible to figure out the reason for the missing, then 
that particular value can be dropped. Pandas function, dropna() can be used to do 
this,  but doing this can drop or lose information, so be mindful of what is being 
removed or dropped this before  removing it. 

 
 Noisy Data: Random variance in the data is called noise. It is generated due to 

faulty data collection or errors in data collection. It adversely affects the analysis of 
the data.The following methods called smoothening techniques are used to handle 
noisy data: 

a) Binning Method: This method is also known as discretization, is used to 
smooth sorted data values by consulting the values around it i.e., the neighbouring 
values. It is a local smoothening method, since it refers to the neighbouring values. 
In this method, the entire data is divided into equal segments called bins or 
buckets. Smoothing by binning is done by one of the following methods: 

 Smoothening by Bin Means: In smoothing by bin means, each value in a 
bin is replaced by the mean value of the bin. 

 Smoothening by Bin Median: In smoothing by bin means, each value in a 
bin is replaced by the median value of the bin. 

 Smoothening by Bin Boundary:  In smoothing by bin boundaries, the 
minimum and maximum values in a given bin are identified as the bin 
boundaries. Each bin value is then replaced by the closest boundary value. 

     Algorithm: 

1.  Sort the dataset. 
2. Partition the dataset into ‗ n‘ segments. Each segment should contain approximately 

same number of data elements. Partitioning can be done using either of the 
following methods namely: equal width binning, equal frequency binning or 
entropy-based binning. 

3. Calculate the arithmetic mean or media or replace by boundary (min and max value) 
4. Replace each data element in each bin by the calculated mean/ median/ boundaries. 

 
Example: Given data:18,22,6,6,9,14,20,21,12,18,18,16. Illustrate binning by mean, median 
and boundary replacement. Given bin depth=3 

 
Step1: Sort the data: 6,6,9,12,14,16,18,18,18,20,21,22, 
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Step 2: Partition the data into equal frequency bins of size of bin depth(n/d) where n= 
no. of elements and d= bin depth 

  N/D=12/3=4 bins 

  Bin 1:  6,  6 , 9 
Bin 2: 12,14, 16 
Bin 3: 18,18,18 
Bin 4: 20, 21, 22 
 

Step 3: Calculate Arithmetic mean 
Arithmetic mean= Sum of observations ÷ number of observations 
                            Bin 1= (6+6+9)/3=21/3=7 
Bin 2= (12+14+16)/3= 42/3=14 
                             Bin 3=(18+18+18)/3= 54/3=18 
Bin 4= (20+21+22)/3= 63/3=21 

Step 4: Replace each data element in each bin by the calculated mean 
                                      Bin 1:  7, 7, 7 

                    Bin 2: 14,14,14 
                    Bin 3: 18,18,18 
                    Bin 4: 21, 21, 21 
 

 Binning using Median: In this method, Step 1 and step 2 are same. 
 
 Step 3: Calculate Median (50% percentile)  
          Median is the observation 2 in each bin 

Step 4: Replace each data element in each bin by the calculated mean 
                   Bin 1:  6, 6, 6 

Bin 2: 14,14,14 
Bin 3: 18,18,18 
Bin 4: 21, 21, 21 

 Binning using Boundary Values:  In this, we keep the minimum as well as 
maximum values. 

                                      Bin 1:  6, 6, 9 
                                      Bin 2: 12,12,16 
                                      Bin 3: 18,18,18 
                                      Bin 4: 20, 20, 22         

b) Regression: Regression is used to find a mathematical equation to fit the data to 
smooth out the noise. Regression may be linear or multiple. Linear regression is used 
to find the best line that fits two variables such that one predicts the other. Multiple 
linear regression involves more than two variables are involved. 
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c) Clustering: Cluster analysis in data mining refers to detecting out the category of 
things that are identical to each other in the category but are discrete from the things in 
another category. Clustering assists to divide information into numerous groups. This 
approach is useful for organizing similar data in groups or clusters. The outliers may be 
detected by clustering. Data Integration makes data more comprehensive and more 
usable. 

2.2.2  Data Integration 

Data Integration is a vital step in which the data acquired from multiple sources is 
integrated into a single centralized location. Data Integration makes data comprehensive 
and more usable. 

 

 

 

 

 

 

 

 

The most common approaches to integrate data are: 

a) Data Consolidation 

b) Data Propagation 

c) Data Virtualization 

d) Data Warehousing 

a)  Data consolidation means to consolidate data from several separate sources into 
one data store, so that it is available to all the stake holders to enable better decision making. 
It involves eliminating redundancies, removing inaccuracies before consolidating to a single 
store. The most common data consolidation techniques are ETL (Extract, Transform, Load), 
Data virtualization and Data warehousing. 

 ETL is the most widely used data consolidation technique. The data is first 
extracted from multiple sources, then it is transformed into an understandable 
format by using various functions like sorting, aggregating, cleaning etc and then 

Data Store1 

Data Store 2 

Integrated Data 

Data Store4 

Data Store3 
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transfer it to a centralized store like another database or data ware house.   The ETL 
process cleans, filters, and transforms data, and then applies business rules before 
data populates the new source. ETL is further of two types namely Real time ETL 
used in real time systems and Batch processing ETL used for high volume 
databases. 

 Data Virtualization: In this method, the data stays in the original location, but 
changes are made in a virtual manner and can be seen in a consolidated manner by 
the users. It is a logical layer that amalgamates data from various sources without 
performing actual ETL process. It is an abstraction such that only the required data 
is visible to the users without requiring technical details about the location or 
structure of the data source. It provides enhanced data security. 

 Data Warehousing is the integration of data from multiple sources to a 
centralized source to facilitate decision making, reporting and query handling. A 
centralized source of data enables better decision making. Data warehousing is the 
secure electronic storage of information by a business or other organization. The 
goal of data warehousing is to create a trove of historical data that can be retrieved 
and analyzed to provide useful insight into the organization's operations. 

b) Data Propagation involves copying data from one location i.e., source to another 
location i.e., target location. It is event driven.  These applications usually operate online 
and push data to the target location. They are majorly useful for real time data movement 
such as workload balancing, backup and recovery. Data propagation can be done 
asynchronously or synchronously. 
 The two methods for data propagation are: Enterprise Application Integration (EAI) and 
Enterprise Data Replication (EDR). The key advantage of data propagation is that it can 
be used for real-time / near-realtime data movement and can also be used for workload 
balancing, backup and recovery. EAI is used majorly for the exchange of messages and 
transactions in real-time business transaction processing; whereas for transfer of 
voluminous data between databases, is used. 
 

c) Data Virtualization: In this, data is not stored in a single location, but is abstracted and 
can be viewed as unified view of data from multiple sources. Data Federation is a form 
of data virtualization, supported by Enterprise information technology (EII). EII 
products have evolved from two different technological backgrounds – relational 
DBMS and XML, but the current trend of the industry is to support both approaches, 
via SQL (ODBC and JDBC) and XML (XML Query Language - XQuery - and XML 
Path Language - XPath) data interfaces. 

 
d) Data Warehousing is the integration of data from multiple sources to a centralized 

source to facilitate decision making, reporting and query handling. A centralized source 
of data enables better decision making. 
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2.2.3 Data Transformation 
After the data has been acquired, it is cleaned as discussed above. The clean data may not 
be in a standard format. The process of changing the structure and format of data to make it 
more usable is called data transformation. Data transformation may be constructive, 
destructive, aesthetic or structural. 

 Constructive Data Transformation involves adding, copying, and replicating data. 

 Destructive Data Transformation involves deleting fields and records. 
 Aesthetic Data Transformation involves standardizing salutations or street names. 
 Structural Data Transformation involves renaming, moving, and combining 

columns in a database. 
 

Data Transformation may require smoothing, aggregation, discretization, attribute 
Construction, generalization and normalization to make data manageable.  

Scripting languages like Python or domain-specific languages like SQL are usually used for 
data transformation. 

2.2.4 Data Reduction  
It is the process of reducing the volume of data such that data integrity is preserved. i.e., the 
volume of data is reduced but the results of data mining before and after mining are the 
same. Data reduction increasing the efficiency of data mining. It helps in reducing the 
storage requirement, reduced computation time and removal of redundancy. The various 
techniques used for data mining are: Dimensionality reduction, 
numerosity reduction and data compression.  

2.2.4.1 Dimensionality Reduction: is the transformation of data from high dimensional 
space to a low dimensional space. It is difficult to visualize data that has higher number of 
features. Sometimes, most of these features are correlated, and hence redundant. This is 
where the need of dimensionality reduction arises.  In other words, dimensionality reduction 
is the process of reducing the number of random variables under consideration, by obtaining 
a set of principal variables. e.g., 3-dimensional data may be reduced to a 2D data. The 
various methods used for dimensionality reduction include: 

 Wavelet Transformation is mostly used in image compression. It is a lossy method 
for dimensionality reduction, where a data vector X is transformed into another 
vector X‘, such that both X and X‘ represent the same length. The result of wavelet 

transform can be truncated, unlike its original, thus achieving dimensionality 
reduction. Wavelet transforms are well suited for data cube, sparse data or data 
which is highly skewed.  

 
 Principal Component Analysis (PCA) is applied to skewed and sparse data. In this 

method, the entire data set is represented by few independent tuples with ‗n‘ 

https://towardsdatascience.com/python-data-transformation-tools-for-etl-2cb20d76fcd0
https://towardsdatascience.com/python-vs-sql-comparison-for-data-pipelines-8ca727b34032
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attributes. This method was introduced by Karl Pearson. It works on a condition that 
while the data in a higher dimensional space is mapped to data in a lower dimension 
space, the variance of the data in the lower dimensional space should be maximum. 
It involves the following steps: 

i. Construct the covariance matrix of the data. 
ii. Compute the eigenvectors of this matrix. 

iii. Eigenvectors corresponding to the largest eigenvalues are used to reconstruct 
a large fraction of variance of the original data. 

 
Hence, lesser number of eigenvectors are left. 

 
 Attribute Subset Selection: In this method, a subset of some selected attributes is 

created for reducing the volume of data. The goal of attribute subset selection is to find a 
minimum set of attributes such that dropping of those irrelevant attributes does not much 
affect the utility of data and the cost of data analysis could be reduced. 
 Attribute Subset Selection is done by the following methods: 
1. Stepwise Forward Selection. 
2. Stepwise Backward Elimination. 
3. Combination of Forward Selection and Backward Elimination. 
4. Decision Tree Induction. 

 
2.2.4.2  Numerosity Reduction: is the reduction of original data and its representation in a 
smaller form. It can be done in two ways: parametric and non-parametric numerosity 
reduction. 

i) Parametric Numerosity Reduction: In this method, only the data parameters 
are stored, instead of the entire original data. The data is represented using some 
model to estimate the data, so that only parameters of data are required to be 
stored, instead of actual data. Regression and Log-Linear methods are used for 
creating such models. 

ii) Non- Parametric Numerosity Reduction methods are used for storing reduced 
representations of the data include histograms, clustering, sampling and data cube 
aggregation. 

 Histogram is the data representation in terms of frequency. It uses binning to 
approximate data distribution and is a popular form of data reduction. 

 Clustering divides the data into groups/clusters. This technique partitions the 
whole data into different clusters. In data reduction, the cluster representation of 
the data are used to replace the actual data. It also helps to detect outliers in data.  

 Sampling can be used for data reduction because it allows a large data set to be 
represented by a much smaller random data sample (or subset). 
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 Data Cube Aggregation involves moving the data from detailed level to a fewer 
number of dimensions. The resulting data set is smaller in volume, without loss 
of information necessary for the analysis task. 

 
2.2.4.3  Data Compression is a technique in which the original data is compressed for 
reduction. This compressed data can again be reconstructed to form the original data. If the 
data is reconstructed without losing any information, then it is a ‗lossless‘ data reduction. 

2.3 DATA MINING 
Data mining is the process that helps in extracting information from a given data set to 
identify trends, patterns, and useful data. The objective of using data mining is to make 
data-supported decisions from enormous data sets. Different types of data can be mined 
such as Data stored in database, data warehouse, transactional data and other types of data 
such as data streams, engineering design data, sequence data, graph data, spatial data, 
multimedia data, and more. The data mining process breaks down into five steps: 

1. An organization collects data and loads it into a data warehouse. 
2. The data are then stored and managed, either on in-house servers or in a cloud 

service. 
3. Business analysts, management teams, and information technology professionals 

access and organize the data. 
4. Application software sorts the data. 
5. The end-user presents the data in an easy-to-share format, such as a graph or table. 

In recent data mining projects, various major data mining techniques have been developed 
and used, including association, classification, clustering, prediction, sequential patterns, 
and regression. 

 Association is a data mining technique useful to discover a link between two or 
more items. It uses if-then statements to show the probability of interactions 
between data items within large data sets.  It finds a hidden pattern in the data set. It 
is commonly used to help sales correlations in data or medical data sets. 

 Clustering is a data mining technique in which clusters are created of objects that share 
the same characteristics. Clusters relate to hidden patterns. It is based on 
unsupervised learning. 

 Classification classifies items or variables in a data set into predefined groups or 
classes. It is based on unsupervised learning.  

  Prediction is used in predicting the relationship that exists between independent and 
dependent variables as well as independent variables alone. It can be used to predict 
future trends. It analyses past events or instances in the right sequence to predict a 
future event. 

 Sequential patterns is a data mining technique specialized for evaluating sequential 
data to discover sequential patterns. It comprises of finding interesting subsequence in 
a set of sequences, where the stake of a sequence can be measured in terms of 
different criteria like length, occurrence frequency, etc. 
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 Regression: Regression analysis is the data mining process is used to identify and 
analyze the relationship between variables because of the presence of the other factor. 
It is used to define the probability of the specific variable. Regression, primarily a 
form of planning and modeling. For example, we might use it to project certain costs, 
depending on other factors such as availability, consumer demand, and competition. 
Primarily it gives the exact relationship between two or more variables in the given 
data set. 
 

2.3.1 Data Mining Applications 
Data mining is useful in predictions, classification, clustering and trends, which makes it 
applicable to many domains like health care, fraud detection, education, market basket 
analysis, manufacturing, sales, customer relationship management, finance and banking etc. 

2.4 DATA INTERPRETATION 
The process of reviewing data through some predefined processes to be able to assign some 
meaning to the data and arrive at a relevant conclusion is called data interpretation. It 
involves taking the result of data analysis, making inferences on the relations studied, and 
using them to reach conclusions and develop recommendations. Data interpretation is done 
by analyst to make inferences from the data. There are two ways to interpret data namely 
Qualitative and Quantitative. 
Qualitative Data Interpretation: Qualitative data also called categorical data, does not 
contain numbers, it consists of text, pictures, observations, symbols etc. The interpretation of 
patterns and themes in qualitative data is done using qualitative methods. 

Quantitative Data Interpretation is done on quantitative data i.e. numerical data. It 
involves statistical methods such as mean, standard deviation, variance, frequency 
distribution, regression etc. Data analysis and interpretation, regardless of method and 
qualitative/quantitative status, may include the following characteristics: 

 Data identification and explanation 
 Comparing and contrasting of data 
 Identification of data outliers 
 Future predictions 

Data Interpretation is helpful in improving processes by identifying problems. Data 
interpretations is used for predicting trends after studying the patterns in the data. It is helpful 
in better decision making. 

2.5 SUMMARY 
This chapter introduces the various facets of data and the varius data preprocessing 
techniques. A brief introduction to dat mining and data interpretation is provided in this 
chapter. 
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2.6 PRACTICE QUESTIONS 

Q1. What are the various types of data? 
Q2.Explain the concept of data preprocessing. What are the techniques used for 
preprocessing of data? 
Q3. Write a short note on Data mining. 
Q4. What are the techniques used for data mining? 
Q5. What is the importance of data Interpretation? 
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3.0 OBJECTIVES 
1. To familiarize with the data representation and types of data 
2. To familiarize with the general techniques of handling data 

3.1 BIG DATA ANALYTICS 
The assortment of any kind of data which is large, highly complex and difficult to manage 
and handle in the real time scenario with the traditional management techniques becomes the 
Big Data. The most extensively technique for the management of data was Relational DBMS 
which was a kind of dataset that fits in all the scenarios for the storage, manipulation and 
interpretation of data but it failed in case of big data. A groundbreaking study in 2013 
reported 90% of the entirety of the world‘s data has been created within the previous two 
years. In the previous two years researchers have composed and handled data which is 9 
times the data being processed in the previous 1000 years of the survival.  As per the 
statistical institute, already 2.7 zettabytes of data have been generated and by 2025 it might 
escalate to a limit beyond belief which ca be 100zettabytes or even more. 

What do we do with all of this data? How do we make it useful to us? What are its real-world 
applications? These questions are the domain of data science.  

3.2 DATA SCIENCE - WORKING 
In order to handle the query for complete in depth and a sophisticated approach for the 
exploration of the raw unprocessed data into the real time multiple disciplines with the 
expertise in machine learning and AI based dimensions, data science gives the solution with 
the most advanced means and methods. The scrutiny of the relevant information from the 
irrelevant raw data and pass on or forward only the most vital data for the enhancing the 
computing efficiency with the revolution in the fields of engineering, mathematics, statistics, 
advanced computing and visualizations. The data science is the basic field of exploration of 
data where the researchers or the data scientists also rely heavily on artificial intelligence for 
the creation of simulated models and then predicting the values of the parameters with the 
algorithms designed for manipulation of data into information. The working in the field of the 
data science is thereby based on the types of data being explored and manipulation needed 
e.g., if the simple data in form of tables is available then RDBMS is used and if image data is 
present then RDBMS fails.   

3.3 FACETS OF DATA 
In data science and big data, the data required for the manipulation and interpretation 

changes with the change in the types of tools and techniques applied in the algorithm. The 
types of the data explored in the field of data science can be categorized as follows: 

• Structured 
• Unstructured 
• Natural language 
• Machine-generated 
• Streaming 

https://www.sciencedaily.com/releases/2013/05/130522085217.htm
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• Acoustic data, video, and images 
• Sensor Data 
• Graph-based/ Network data 

As in the previous chapter we have explored the data categories structured versus 
unstructured data. Let‘s talk about the rest of the representation of data and the explore the 

characteristics. The structured data is the main type of data explored in a model and can be 
expressed as a record with a field of fixed length and dimension. The RDBMS and the Excel 
data is usually the structured data with known or used defined datatypes with structural 
information. Bu the unstructured data is data that may not fit any kind of mathematical or 
simulated model for the study of data due to the context-specific or varying nature of the 
stored raw data. One example of unstructured data is the email. 

3.3.1   Natural Language Data 
Another special type of unstructured data is the Natural language data with the 

challenging approach to progression the data and manipulate it. The handling of large amount 
of natural language data and  processing in itself necessitates the data scientists to acquire the 
knowledge of specific data science techniques and linguistics. The natural language 

processing community has had success in entity recognition, topic recognition, 
summarization, text completion, and sentiment analysis, but models trained in one domain 
don‘t generalize well to other domains. Even state-of-the-art techniques aren‘t able to 

decipher the meaning of every piece of text. The meaning of the same words can vary when 
coming from someone upset or joyous. This is illustrated in figure 3.1. 

 

 

 

Fig. 3.1.1 Perfect example of Natural Language data [12] 
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3.3.2  Machine Generated Data 
The machine or the computer has the capability to generate the data based on the 

requirement of the developer or the application developed. The data generated by the 
machine or any robotic process without the intervention of a human is a fast process and also 
help to forecast certain information for the application, or other machine without human 
intervention. Machine-generated data is becoming a major data resource and will continue to 
do so. Wikibon has forecast that the market value of the industrial Internet (a term coined by 
Frost & Sullivan to refer to the integration of complex physical machinery with networked 
sensors and software) will be approximately $540 billion in 2020. IDC (International Data 
Corporation) has estimated there will be 26 times more connected things than people in 2020. 
This network is commonly referred to as the internet of things.The analysis of machine data 
relies on highly scalable tools, due to its high volume and speed. Examples of machine data 
are web server logs, call detail records, network event logs, and telemetry. This is illustrated 
by figure 3.2. 

3.3.3 Streaming Data 
The streaming data when being administered for the information can take nay form and 

format which is an interesting property. This type of data only gets loaded into the server or 
the data warehouse when any relevant activity occurs or there‘s an interpretable change in the 

parameters. The data is not accessed in batch mode. This type of data is not actually a 
different category but the system for the processing of such varying formats needs to be 
adaptive to the minutest variations in the information to be handled.  

Examples are the ―What‘s trending‖ on Twitter, live sporting or music events, and the stock 
market. 

3.3.4 Acoustic, video and image data 
The world of animation and digitization has developed multimedia datasets with audio, 

video and images. These types of datsets can be stored, handled and interpreted with the 
Object-Oriented Databases. The databases include the class inheritance and interface in a pre-
specified format for handling the complexity of the data and finding its application in Digital 
libraries, video-on demand, news-on demand, musical database, etc. The other type of 

 
Fig. 3.1.2 Example of machine generated data [12] 
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information in the multimedia datasets can be represented and reproduced as sensory 
experiences - touch, sense and hear  which are typically leading to storing a huge amount of 
data handled by digitizing. Furthermore, data compression for images and sounds can exploit 
limits on human senses performed by throwing away information not needed for good-quality 
experience which is performed by compression. There are certain limitations when you deal 
with such a large amount of data are described below: 

1. Range is limited and might lead to misinformation 
• only certain pitches and loudness can be heard  
• only certain kinds of light are visible, and there must be enough / not too much 

light  
2.  Discrimination due to the descriptive features of the data 

• pitches, loudness, colors, intensities can‘t be distinguished unless they are 

different enough (color1, color2)  
3. Coding the information of the sensory data into digital world. 

• nervous systems ―encode‖ experience, e.g., rods and cones in the eye 
 
3.3 REPRESENTATION OF IMAGE DATA 

The image data is expanding vastly and due to enhancement in the cameras the encoding is 
needed for computation and manipulation of image data. The techniques are vector array-
based encoding and bit map-based encoding. 

Vector graphics encode the image sequences as a series of lines or curves. The process is 
expensive in term of image computation but smoothly rescales. 

Bit map encode the image as an array of pixels. The encoding process is cost effective in 
terms of computation but scales inefficiently leading to loss of image data.  

The Basic idea of image data is the array of receptors where each receptor records a pixel by 
―counting‖ the number of photons that strike it during exposure. The Red, green, blue 

recorded separately at each point on image produced by group of three receptors where each 
receptor is behind a color filter. 

Representation of Acoustic data: In recent years, the analysis of acoustic characteristics of 
speech and sound has been one of the areas that data mining has found its way through. The 
present research study is also related to this topic which aims to detect the gender of the 
speaker by using the acoustic feature of his voice. When an instrument is played or a voice 
speaks, periodic (many times per second) changes occur in air pressure, which we interpret as 
acoustics. For the representation of the acoustic data compression is needed. Codecs 
(compression/decompression) implement various compression/decompression techniques 
which are either lossy or lossless. The lossy compression of the acoustic data may lead to loss 
of certain information as it is non-repetitive: MPEG (like JPEG) a family of perceptually-
based techniques are all lossy techniques. While the other type of techniques is where the 
information of the acoustic data is preserved in which WMA Lossless, ALAC, MPEG-4 ALS 
methods are applied. 
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The encoding of data in form of  the sounds heard or the visuals captured are highly 
challenging for the data scientists to process the information. Some tasks performed by the 
human brain have been of great difficulty to the computers for the recognition of the object in 
the images. MLBAM (Major League Baseball Advanced Media) announced in 2014 that 
they‘ll increase video capture to approximately 7 TB per game for the purpose of live, in-
game analytics. The higher resolution cameras and acquiring sensors have the capability to 
capture the motion of ball and the player in a real time scenario e.g., the path taken by a 
defender relative to two baselines. 

Recently a company called DeepMind succeeded at creating an algorithm that‘s 

capable of learning how to play video games. This algorithm takes the video screen as input 
and learns to interpret everything via a complex process of deep learning. It‘s a remarkable 

feat that prompted Google to buy the company for their own Artificial Intelligence (AI) 
development plans. The learning algorithm takes in data as it‘s produced by the computer 

game; it‘s streaming data. 

3.3.5 Sensor Data 
Any input acquired from the physical environment which is detected and responded from 

the devices as an output is the collaborative approach of the sensor data. The extracted data 
from the sensor devices act as an output for a real time system or as an input to another 
system for the performance of any activity. These  sensors can be used to perceive any type 
of physical element with the approach to detect the events or changes in the environment. A 
sensor is always used with other electronics, as simple as a lamp or as complex as a 
computer. Advanced chip technology makes it possible to integrate all the required functions 
at low cost, in a small volume and with low energy consumption. The number of sensors 
around us is increasing rapidly. Estimates vary, but many expect that by 2030 more than 500 
billion sensors will be connected to each other via the Internet of Things (IoT). 

The exponential growth of the IoT based systems leads to ever demanding rise in the 
input sensor devices which are responsible for the collection, storage and interpretation of the 
captured data. In addition, consumers, organizations, governments and companies themselves 
produce more and more data, for example on social media. The amount of data is growing 
exponentially. People speak of Big Data when they work with one or more datasets that are 
too large to be maintained with regular database management systems. 

The pros of applying sensor data to the input devices is that the decisions of the IoT 
devices are subjected to information accessed from the evidences and not from any kind of  
irrelevant details and subjective experiences. This type of knowledge base makes the system 
cost effective with the enhanced streamlined processes, boosted product quality and better 
services. By combining data intelligently and by interpreting / translating, new insights are 
created that can be used for new services, applications and markets. This information can also 
be combined with data from various external sources, such as weather data or demographics.  
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3.3.6 Graph/ Network Data 
―Graph data‖ is the type of data which can be represented as graph with a special 

characteristic of comprising the mathematical graph theory into the mined information. 
―Graph‖ in the network data generally represents a model in the statistical and mathematical 

domain with pair wise relationship in the constituent objects. Graph or network data is, in 
short, data that focuses on the relationship or adjacency of objects. The representation of the 
graph models includes the nodes, edges, and relationships between the stored data in the 
nodes. Graph-based data is a natural way to represent social networks, and its structure allows 
you to calculate specific metrics such as the influence of a person and the shortest path 
between two people. 

Examples of graph-based data can be found on many social media websites (figure 3.3). For 
instance, on LinkedIn you can see who you know at which company. Your follower list on 
Twitter is another example of graph-based data. Graph databases are used to store graph-
based data and are queried with specialized query languages such as SPARQ. 

3.4 MULTIPLE PROBLEMS IN HANDLING LARGE DATASETS 
The multiple problems in the large datasets are discussed by numerous data scientists 

with the need to understand the  growing demand of  the data and handling the mathematical 
as well as statistical operations for the manipulation of the data. In the last two years, over 
90% of the world‘s data was created, and with 2.5 quintillion bytes of data generated daily, it 

is clear that the future is filled with more data, which can also mean more data problem in 
context to the following:  

• Collecting, storing, sharing and securing data 
• Creating and utilizing meaningful insights from their data. 

Some common big data problems and the respective solutions have been discussed below. 

1. Lack of Understanding 

The lack of understanding of the mined data in the data science-based companies might 
lead to knocked down the performance in many areas. Many of the major areas for the data-

 
Fig. 3.1.3 Friends in social network are example of Graph Network[12] 
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based companies were: depreciate the expenses of mining information, innovate new ideas 
for interpretation, new product launching, enhance performance and so on. Despite the 
benefits, companies have been slow to adopt data for a data centric approach.  

Solution: Follow a top-down approach for the introduction and manipulation of the data 
science based on the procedures followed up. In case of lack of a data science professional, 
the consultancy services or an IT proficient with data science knowledge should be hired to 
get a better understanding.  

2. High Cost of Data Solutions 

 The companies have understood that buying and maintaining of necessary components make 
the system less cost effective. In addition to cost of the servers and the software-based 
storage, the high-end cost of the data science experts makes the system time consuming. 

Solution: The solution is to understand the need and use of the data with a collaborative 
method to find a goal, conduct a research or solution and implement the execution with a 
plan. 

3. Too Many Choices 

Coined as the ―paradox of choice,‖ Schwartz explains how option overload can cause 

inaction on behalf of a buyer. In the world of data and data tools, the options are almost as 
widespread as the data itself, so it is understandably overwhelming when deciding the 
solution that‘s right for the business, especially when it will likely affect all departments and 

hopefully be a long-term strategy. 

Solution: Like understanding data, a good solution is to leverage the experience of your in-
house expert, perhaps a CTO. If that‘s not an option, hire a consultancy firm to assist in the 

decision-making process. Use the internet and forums to source valuable information and ask 
questions. 

4. Complex Systems for Managing Data 

The systems to understand the data management and finding a relevant solution for the 
manipulation of data is in itself a problem Due to the vast expanse of the different types of 
data with the IT teams creating their own data during the process of data handling results in 
increased complexity.  

Solution: Find a solution with a single command center, implement automation whenever 
possible, and ensure that it can be remotely accessed 24/7. 

5. Security Gaps 

Another important aspect of the data science is the security of the data and the biasing of 
the large amount of data is always possible. In order to handle it the encryption and 
decryption must be performed with the data store with proper storage. 

Solution: The data need to be handled with automated security updates of the data warehouse 
and automated backups. 
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6. Low Quality and Inaccurate Data 

Having data is only useful when it‘s accurate. Low quality data not only serves no 

purpose, but it also uses unnecessary storage and can harm the ability to gather insights from 
clean data. 

A few ways that data can be considered low quality is: 

• Inconsistent formatting (which will take time to correct and can happen when the 
same elements are spelled differently like ―US‖ versus ―U.S.‖), 

• Missing data (i.e. a first name or email address is missing from a database of 
contacts), 

• Inaccurate data (i.e. it‘s just not the right information or the data has not be 

updated). 
• Duplicate data (i.e. the data is being double counted) 
• If data is not maintained or recorded properly, it‘s just like not having the data in 

the first place. 

Solution: Begin by defining the necessary data you want to collect (again, align the 
information needed to the business goal). Cleanse data regularly and when it is collected from 
different sources, organize and normalize it before uploading it into any tool for analysis. 
Once you have your data uniform and cleansed, you can segment it for better analysis. 

7. Compliance Hurdles 

When collecting information, security and government regulations come into play. 
With the somewhat recent introduction of the General Data Protection Regulation (GDPR), 
it‘s even more important to understand the necessary requirements for data collection and 

protection, as well as the implications of failing to adhere. Companies have to be compliant 
and careful in how they use data to segment customers for example deciding which customer 
to prioritize or focus on. This means that the data must: be a representative sample of 
consumers, algorithms must prioritize  fairness, there is an understanding of inherent bias in 
data, and Big Data outcomes have to be checked against traditionally applied statistical 
practices. 

Solution: The only solution to adhere to compliance and regulation is to be informed and 
well-educated on the topic. There‘s no way around it other than learning because in this case, 
ignorance is most certainly not bliss as it carries both financial and reputational risk to your 
business. If you are unsure of any regulations or compliance you should consult expert legal 
and accounting firms specializing in those rules. 

3.5 General Techniques for Handling Large Data 
The multiple challenges have been discussed in the section above and the solutions 

for the defies are categorized based on the algorithms and out of memory errors. Never-
ending algorithms, out-of-memory errors, and speed issues are the most common challenges 
you face when working with large data. In this section, we‘ll investigate solutions to 

overcome or alleviate these problems. 
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The solutions can be divided into three categories: using the correct algorithms, 
choosing the right data structure, and using the right tools. (Figure 3.4) 

There is no such relationship between the problems discussed in the section above and 

the solutions to be incorporated. There are multiple solutions to a given problem which can 
also handle the issue of memory and computational overhead. This type of data science 
solutions can be generalized for challenges in the exploration of data. For instance, the 
compression and decompression of the data set help resolve the memory issues but this also 
affects computation speed with a shift from the slow hard disk to the fast CPU. Contrary to 
RAM (random access memory), the hard disc will store everything even after the power goes 
down, but writing to disc costs more time than changing information in the fleeting RAM. 
When constantly changing the information, RAM is thus preferable over the (more durable) 
hard disc. 

3.5.1 Choosing the Right Algorithm 

T 

 

 

 

 

 

 

 

 

The selection of an effective algorithm for the processing of the data can provide 
better results as compared to the enhanced hardware. In order to perform the predictive or 

 

Fig. 3.1.4 Overview of solutions for handling large data sets[12] 

 

 

Fig. 3.1.5 The algorithms for handling the Big Data[12] 
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selective analysis the best-chosen algorithm need not necessarily load the complete data into 
the memory or RAM, it rather supports the parallel computations with parallel or distributed 
databases. In this section three types of algorithms have been discussed that can perform the 
computations parallelly reducing the computation or memory overhead: online algorithms, 
block algorithms, and MapReduce algorithms, as shown in figure 3.5. 

Several, but not all, machine learning algorithms can be trained using one observation 
at a time instead of taking all the data into memory. The model can be trained based on the 
current parameters and the previous parameter values can be made to forget by the algorithm. 
This technique of ―use and forget ‖ helps to attain high memory effectiveness in the system. 

This way as the new data values is acquired by the algorithm, the previous values are 
forgotten or overwritten but the effect can be witnessed or observed in the performance 
metrics of the proposed model. Most online algorithms can also handle mini-batches; this 
way, the data science exert or the developer can feed the batches of 10 to 1,000 observations 
at one single instance and then applying the sliding window protocol to access the data. This 
learning can be handled by multiple means discussed as follows: 

 Full batch learning (also called statistical learning) —Feed the algorithm all 
the data at once.  

 Mini-batch learning —Feed the algorithm a spoonful (100, 1000, ..., 
depending on what your hardware can handle) of observations at a time. 

 Online learning —Feed the algorithm one observation at a time. 
 

 

 

 

 

 

 

 3.5.2 Right Data Structure 

The algorithms as discussed can enhance the performance and execution for the 
manipulation of the data in the warehouse. This process in the data science field actually 
leads to fragmentation in the raw data so that is the reason the structures for the storage of 
the data is equally important for the data scientist or a data science researcher. Data 
structures have different storage requirements, but also influence the performance of 
CRUD (create, read, update, and delete) and other operations on the data set.  

 

 

Fig. 3.1.6 Data structures applied in the data science[12] 
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 Sparse Data 
Most of the IT professional and the data scientist understand the representation 

through a sparse matrix. Similarly, the sparse data illustration can be done by giving a 
minimal detail about the data as compared to the total number of entries. As per figure 
3.7, the conversion of the data from the text to binary or an image to binary can be 
expressed as the sparse data.  Imagine a set of 100,000 completely unrelated Twitter 
tweets. Most of them probably have fewer than 30 words, but together they might have 
hundreds or thousands of distinct words. For this reason, the text documents are 
processed for the stop words, cut into fragments and stored as vectors instead of the 
binary information. The basic idea is that any word present in the tweet is expressed as 1 
and not in tweet is expressed as 0 resulting in sparse data indeed. But the matrix 
generated would require equal memory as compared to any other matrix even though it 
has a little information.  

 

 

 Tree Structure 
Trees  is a special type of data structure that has faster retrieval of information in 

comparison to the table or sparse data. In these data structures the root node is the first 
directory for accessing the information and the child nodes are the sub directories of the 
root node. The information can be accessed form the child or leaf nodes by either using 
pointers or indexing of the tree structure. The figure 3.8 helps the researcher to 
understand the process of information retrieval in the tree structure.  
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 Hash Tables 
The process of the calculation of the key for each data entry and allotting the key to 

the relevant bucket is the important process of the hash table structure for th storage of 
data. The process of storage and handling in the hash table makes it more reliable source 
for the retrieval of information based on the key value. This way you can quickly retrieve 
the information by looking in the right bucket when you encounter the data. Dictionaries 
in Python are a hash table implementation, and they‘re a close relative of key-value 
stores. You‘ll encounter them in the last example of this chapter when you build a 

recommender system within a database. Hash tables are used extensively in databases as 
indices for fast information retrieval. 

3.5.2 Choosing the Right Tools 

As discussed earlier in section 3.4.1 and 3.4.2 with the need to have a right algorithm 

and the right data structure, the requirement of a good tool is also important. The right 
tool can be a Python library or at least a tool that‘s controlled from Python, as shown 

figure 3.9.  
Python has a number of libraries that can help you deal with large data. They range 

from smarter data structures over code optimizers to just-in-time compilers. The 
following is a list of libraries we like to use when confronted with large data: 

Cython —The closer to the actual hardware of a computer, the more vital it is for the 
computer to know what types of data it has to process. For a computer, adding 1 + 1 is 
different from adding 1.00 + 1.00. The first example consists of integers and the second 
consists of floats, and these calculations are performed by different parts of the CPU. 
Python needs no specifications of the types of the data but the compiler can itself interpret 
the values based on the integer or float. This is although a slow process and so a superset 
of python can be used for the solution which forces the user to define the data type before 
the execution and hence can be implemented much faster.  See http://cython.org/ for more 
information on Cython. 

 

Fig. 3.1.7 Tools applied by data scientist for handing data[12] 
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Numexpr —Numexpr is at the core of many of the big data packages, as is NumPy for 
in-memory packages. Numexpr is a numerical expression evaluator for NumPy but can be 
many times faster than the original NumPy. https://github.com/pydata/numexpr. 

Numba —Numba is the package which compiles (just-in-time compiling) the code for 
the data manipulation and handling before actually executing it which makes it faster and 
less prone to errors. With the user gets a platform to develop a high level code wit the 
speed of the compilation as in C. http://numba.pydata.org/. 

Bcolz —Bcolz helps you overcome the out-of-memory problem that can occur when 
using NumPy. It can store and work with arrays in an optimal compressed form. It not 
only slims down your data need but also uses Numexpr in the background to reduce the 
calculations needed when performing calculations with bcolz arrays. 
http://bcolz.blosc.org/. 

Blaze — Blaze is ideal in case the data scientist use the power of a database backend 
but like the ―Pythonic way‖ of working with data. Blaze will translate your Python code 

into SQL but can handle many more data stores than relational databases such as CSV, 
Spark, and others. Blaze delivers a unified way of working with many databases and data 
libraries. http://blaze.readthedocs.org/en/latest/index.html. 

Theano —Theano enables you to work directly with the graphical processing unit 
(GPU) and do symbolical simplifications whenever possible, and it comes with an 
excellent just-in-time compiler. On top of that it‘s a great library for dealing with an 

advanced but useful mathematical concept: tensors. 
http://deeplearning.net/software/theano. 

3.6 DISTRIBUTING DATA STORAGE AND PROCESSING WITH FRAMEWORKS 
New big data technologies such as Hadoop and Spark make it much easier to work 

with and control a cluster of computers. Hadoop can scale up to thousands of computers, 
creating a cluster with petabytes of storage. This enables businesses to grasp the value of 
the massive amount of data available. ―Big data Analytics‖ is a phrase that was coined to 

refer to amounts of datasets that are so large, traditional data processing software simply 
can‘t manage them. For example, big data is used to pick out trends in economics, and 

those trends and patterns are used to predict what will happen in the future. These vast 
amounts of data require more robust computer software for processing, best handled by 
data processing frameworks. These are the top preferred data processing frameworks, 
suitable for meeting a variety of different needs of businesses. 

3.6.1 Hadoop 
This is an open-source batch processing framework that can be used for the 

distributed storage and processing of big data sets. Hadoop relies on computer clusters 
and modules that have been designed with the assumption that hardware will inevitably 
fail, and those failures should be automatically handled by the framework. 

There are four main modules within Hadoop. Hadoop Common is where the libraries 
and utilities needed by other Hadoop modules reside. The Hadoop Distributed File 
System (HDFS) is the distributed file system that stores the data. Hadoop YARN (Yet 
Another Resource Negotiator) is the resource management platform that manages the 

http://deeplearning.net/software/theano
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computing resources in clusters, and handles the scheduling of users‘ applications. The 

Hadoop MapReduce involves the implementation of the MapReduce programming model 
for large-scale data processing. 

Hadoop operates by splitting files into large blocks of data and then distributing those 
datasets across the nodes in a cluster. It then transfers code into the nodes, for processing 
data in parallel. The idea of data locality, meaning that tasks are performed on the node 
that stores the data, allows the datasets to be processed more efficiently and more quickly. 
Hadoop can be used within a traditional onsite datacenter, as well as through the cloud. 

3.6.2 Apache Spark 
Apache Spark is a batch processing framework that has the capability of stream 

processing, as well, making it a hybrid framework. Spark is most notably easy to use, and 
it‘s easy to write applications in Java, Scala, Python, and R. This open-source cluster-
computing framework is ideal for machine-learning, but does require a cluster manager 
and a distributed storage system. Spark can be run on a single machine, with one executor 
for every CPU core. It can be used as a standalone framework, and you can also use it in 
conjunction with Hadoop or Apache Mesos, making it suitable for just about any 
business. 

Spark relies on a data structure known as the Resilient Distributed Dataset (RDD). 
This is a read-only multiset of data items that is distributed over the entire cluster of 
machines. RDDs operate as the working set for distributed programs, offering a restricted 
form of distributed shared memory. Spark is capable of accessing data sources like 
HDFS, Cassandra, HBase, and S3, for distributed storage. It also supports a pseudo-
distributed local mode that can be used for development or testing. 

The foundation of Spark is Spark Core, which relies on the RDD-oriented functional 
style of programming to dispatch tasks, schedule, and handle basic I/O functionalities. 
Two restricted forms of shared variables are used: broadcast variables, which reference 
read-only data that has to be available for all the nodes, and accumulators, which can be 
used to program reductions. Other elements included in Spark Core are: 

Spark SQL, which provides domain-specific language used to manipulate Data 
Frames. 

Spark Streaming, which uses data in mini-batches for RDD transformations, allowing 
the same set of application code that is created for batch analytics to also be used for 
streaming analytics. Spark MLlib, a machine-learning library that makes the large-scale 
machine learning pipelines simpler. GraphX, which is the distributed graph processing 
framework at the top of Apache Spark. 

3.6.3 Apache Storm 
This is another open-source framework, but one that provides distributed, real-time 

stream processing. Storm is mostly written in Clojure, and can be used with any 
programming language. The application is designed as a topology, with the shape of a 
Directed Acyclic Graph (DAG). Spouts and bolts act as the vertices of the graph. The 
idea behind Storm is to define small, discrete operations, and then compose those 
operations into a topology, which acts as a pipeline to transform data. 
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3.6.4 Samza 
Samza is another open-source framework that offers near a real-time, asynchronous 

framework for distributed stream processing. More specifically, Samza handles 
immutable streams, meaning transformations create new streams that will be consumed 
by other components without any effect on the initial stream. This framework works in 
conjunction with other frameworks, using Apache Kafka for messaging and Hadoop 
YARN for fault tolerance, security, and management of resources. 

3.6.5 Flink 
Flink is a hybrid framework, open-source, and stream processes, but can also manage 

batch tasks. It uses a high-throughput, low-latency streaming engine that is written in Java 
and Scala, and the runtime system that is pipelined allows for the execution of both batch 
and stream processing programs. The runtime also supports the execution of iterative 
algorithms natively. Flink‘s applications are all fault-tolerant and can support exactly-
once semantics. Programs can be written in Java, Scala, Python, and SQL, and Flink 
offers support for event-time processing and state management. 

3.7 SUMMARY 
Data science involves using methods to analyze massive amounts of data and extract 

the knowledge it contains. You can think of the relationship between big data and data 
science as being like the relationship between crude oil and an oil refinery. Data science 
and big data evolved from statistics and traditional data management but are now 
considered to be distinct disciplines. 

The foremost aspect for the data scientist to conduct the refining of the raw data is the 
representation of data dealing with the problems of big data. Another aspect of the 
dealing with the problems of big data is to perform the processing of the big data with the 
frameworks. For this multiple special type of data have been explored.  

There are multiple problems being faced by the data scientists for the processing of 
the raw data and mining it into useful and relevant information. Luckily, there are 
pragmatic solutions that companies can take to overcome their data problems and thrive 
in the data-driven economy. The problems and the relevant solutions have been discussed 
in the chapter. Data processing frameworks are not intended to be one-size-fits-all 
solutions for businesses. Hadoop was originally designed for massive scalability, while 
Spark is better with machine learning and stream processing. A good IT services 
consultant can evaluate your needs and offer advice. What works for one business may 
not work for another, and to get the best possible results, you may find that it‘s a good 
idea to use different frameworks for different parts of your data processing. 
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3.8 PRACTICE QUESTIONS 

Q1. Discuss the various representation techniques of different data types. 
Q2.What are the issues that are faced in handling large data? 
Q3. Explain briefly the techniques to handle large data. 
Q4.What are the popular frameworks for big data storage? 
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4.1 OBJECTIVE 
1. To familiarize with the Data Science Ethics 
2. To familiarize with different aspects of privacy 
3. To familiarize with the future trends of data Science 

 

4.2 DATA SCIENCE ETHICS 

 The skill to extract or mine the relevant patterns and the transforming capability to 
revolutionize the products in data science helps to bring a positive change in the social and 
technological sphere making it ethically neutral. It does not come with its own perspective of 
either: what is correct or incorrect; nor: what is good or bad in using it. There is no such kind 
of a value-based framework while the companies working on the data store have a value-
based system for the handling of the information. Anything which is private or protected is 
not for anyone to access except the administrator or the data scientist himself/herself. The 
problems of the ethical mishandling of data and the relevant solutions to the problems must 
be able to amalgamate with the ethics of the companies working in Bigdata.  

The future of the technology world is in the hands of machine learning techniques 
with AI based systems where data science is the solution for the data on which these systems 
are trained. The data science is kind of fuel for he working intelligent systems as there 
training can be done on millions of raw data and all of it can be mined or extracted from the 
data science sources through the extractive approach of the data scientists.  Data Ethics is a 
rapidly improvising field-of-study. The IT professionals and the data scientist work for the 
collection, sharing and the manipulation of data which is done by keeping ethics in the 
exploration of data and are sometimes even forced to deal with the ethics to avoid any kind of  
negative public opinion. Loss of ethics sometimes can prove to be alienating to the reputation 
and work culture of any kind of organization. 

4.3 DATA SCIENCE – GOOD ASPECTS FOR TECHNOLOGY  
Data science involves a plethora of disciplines and expertise areas to produce a holistic, 

thorough and refined look into raw data. The professionals might be trained for the handling, 
manipulation and the interpretation of data but the most important and vital part of the data 
science is to perform the scrutiny of the relevant information from the disarrayed or 
unorganized form of raw data and only interconnect or forward only those data values which 
are of vital importance for the invention or the improvisation of the existing system. These 
reasons are sufficient enough for the data scientists to completely depend upon the existing 
technological advancement in the field of machine learning or deep learning with the ability 
to create the simulated models and predict the values in the models with the proposed 
algorithms and techniques.  

To acclimatize the organization with the ethical data science, there‘s a need to understand 

what actually are the ethics about data science with the cost requirement for the 
implementation of ethical values and what can be the ways to execute such practices.  
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There are several ways and means with the respective solutions for the same. 
Firstly, the data scientist needs to understand about the daintiness of the information in 

the data store. With this the relevant implementation or the operations can be performed on 
the data keeping in the view the consequences with improper or unacceptable access of the 
data for information. Indeed, the security perspective in computer or network has proved 
many times that ignoring the consequences of accessing the data unethically might cause a 
trouble to the data professionals or the company as a whole in terms of loss of reputation or 
money. 

With the available systems it is difficult for any data scientist to predict the inevitable 
unethical uses of the data but with the AI based techniques especially using machine learning 
and deep learning, a prediction can be made for the unintended consequences. For example, 
Facebook‘s ―Year in Review‖ that reminded people of deaths and other painful events. This 

can be handled by the data professionals in the field of data science by keeping in view the 
patterns of the data to be explored and how to think of better means to represent the data with 
a new or enhanced approach.  

Another important step to stop the data mining if the administrator finds any kind of 
problem in the production line. This idea goes back to Toyota‘s Kanban: any assembly line 
worker can stop the line if they see something going wrong. The line doesn‘t restart until the 

problem is fixed. Workers don‘t have to fear consequences from management for stopping 

the line; they are trusted, and expected to behave responsibly 
The issue lurking behind all of these concerns is, of course, corporate culture. Corporate 

environments can be hostile to anything other than short-term profitability. That‘s a 

consequence of poor court decisions and economic doctrine, particularly in the U.S. But that 
inevitably leads us to the biggest issue: how to move the needle on corporate culture. Susan 
Etlinger has suggested that, in a time when public distrust and disenchantment is running 
high, ethics is a good investment. Upper-level management is only starting to see this; 
changes to corporate culture won‘t happen quickly. Users want to engage with companies and 

organizations they can trust not to take unfair advantage of them. Users want to deal with 
companies that will treat them and their data responsibly, not just as potential profit or 
engagement to be maximized. Those companies will be the ones that create space for ethics 
within their organizations. We, the data scientists, data engineers, AI and ML developers, and 
other data professionals, have to demand change. We can‘t leave it to people that ―do‖ ethics. 

We can‘t expect management to hire trained ethicists and assign them to our teams. We need 

to live ethical values, not just talk about them. We need to think carefully about the 
consequences of our work. We must create space for ethics within our organizations. Cultural 
change may take time, but it will happen—if we are that change. That‘s what it means to do 

good data science 

4.4  OWNERS OF DATA 
Data owners are either individuals or teams who make decisions such as who has the right 

to access and edit data and how it's used. Owners may not work with their data every day, but 
are responsible for overseeing and protecting a data domain. 
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A data owner is responsible for the data in a particular data domain. They may belong to 
the steering committee and ensure that the data under their view is governed throughout the 
organization. Data owners approve data glossaries and definitions as well as initiate data 
quality activities. 

Owning' data – who owns data, what's capable of being owned, and what rights and 
responsibilities ownership attracts – is gaining a lot of attention. 

4.4.1 Responsibilities of the Data Owner 
The first responsibility of the data owner is to classify the data correctly.  Once a 

classification has been set it is up to the data owner to determine who has access to the data.  
Usually, this access is based upon roles as opposed to individuals. 

The data classification is one of the most important steps. Data classification has a 
different meaning for different organizations but at the basic level it is knowing the type of 
data a company has, determining its value, and categorizing it.  For example, if your 
company has a secret sauce or original intellectual property it may be considered ―top secret‖ 

or ―confidential‖.  The reason to label or classify it as ―top secret‖ or ―confidential‖ is so it 

can be handled and ultimately protected appropriately.  In addition to not putting the correct 
controls on data there is the potential to retain data for longer than needed or destroy data 
before it should be based on laws or contractual commitments. Many people have an opinion 
on how data should be classified or labeled but at the end of the day it is the responsibility of 
the data owner who is ultimately accountable for the data to make the final decision. The data 
owner will have the most knowledge of the use of the data and the value to the company.  It 
is advisable for the data owner to get input from various sources like the data custodian or 
data users but the data owner has complete control over the data. 

 Who has access to the data? Clarify the roles of people who can access the data. 
Example:  Employees can see an organization chart with departments, manager 
names, and titles but not salary information (Classification = internal).  But a very 
limited audience like HR should only have access to salary data, performance 
data, or social security numbers (Classification = confidential).  

 How is the data secured? Sensitive data elements within HR documentation have 
been classified to be confidential and therefore it requires additional security 
controls to protect it.  Some of the additional controls to secure confidential data 
stored in electronic medium could include being saved in a location on the 
network with appropriate safeguards to prevent unauthorized access (secure 
folders protected by passwords).  

 How long the data is retained? Many industries require that data be retained for a 
certain length of time. For example, the finance industry requires a seven-year 
retention period and some health care industries requires a 100-year retention 
period.  Data owners need to know the regulatory requirements for their data and 
if there is no clear guidance on retention then it should be based off the 
company‘s retention policy or best practices.  
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 How data should be destroyed? Based on the classification of the data there 
should be clear guidance on how to dispose or destroy the data. For example: 

 

 

 What data needs to be encrypted? Data owners should decide whether their data needs 
to be encrypted. To make this determination the data owner should know the applicable 
laws or regulation requirements set that must be complied with. A good example of a 
regulation requirement is set by the Payment Card Industry (PCI) Data Security Standard 
and it requires that the transmission of cardholder data across open, public networks must 
be encrypted. 

4.4.2 The Importance of Assigning Data Owners 
In most organizations, as data passes through different teams and systems, assigning data 
owners can be cumbersome. However, this is a critical step for GDPR compliance. 

Here‘s why assigning data owners is important: 

1. Accountability — Ownership creates accountability. Since GDPR introduces many 
controls on personal data, assigning responsibilities ensures that data will be continuously 
monitored for compliance by the owners. 

2. Defining policies — As they have a vested interest in the integrity of their data, owners 
focus on defining policies (for example retention or deletion policies) and standards that 
ensure the alignment of their data to the GDPR. 

3. Creating trusted data — Data ownership is a key ingredient to gain customer trust and 
achieve measurable business benefits. Poor data could easily result in bad customer 
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experiences and ultimately losing customers. In particular, when personal data is not 
reconciled into a data subject 360° view, compliance with data subject access rights, such as 
rights of portability or rights to be forgotten cannot be fully achieved. 

4. Eliminating redundancies — As organizations strive to put the appropriate governance 
framework in place for GDPR, one common frustration is a loss of productivity. This issue 
stems from multiple teams addressing the same problem either because there isn‘t a clear 

understanding of data or they‘re not even aware that the problem has been resolved by 
another team. Federated ownership eliminates these painful issues. 

4.4.3 Identification of Data Owners: Three Questions to Ask 
The mandatory introduction of a data protection officer (DPO) role by GDPR in most 
organizations effectively creates a master data owner. Each and every element in a data 
taxonomy needs an individual owner, however, and there is little likelihood that a single DPO 
can hold this responsibility on such a large scale. In addition, this could create a security 
issue. Delegation and segregation of duties are needed. 

Asking the right questions helps. Once these questions have been answered, the data owner 
should become clearer: 

1. Who is most impacted by data accuracy? 
2. Who has authority to decide the next step? 
3. Who owns the related data attributes? 

4.5 DIFFERENT ASPECTS OF PRIVACY 
First there is the data where security and privacy has always mattered and for which 

there is already an existing and well galvanized body of law in place. Foremost among these 
is classified or national security data where data usage is highly regulated and enforced. 
Other data for which there exists a considerable body of international and national law 
regulating usage includes: 

Proprietary Data – specifically the data that makes up the intellectual capital of individual 
businesses and gives them their competitive economic advantage over others, including data 
protected under copyright, patent, or trade secret laws and the sensitive, protected data that 
companies collect on behalf of its customers; 

Infrastructure Data - data from the physical facilities and systems – such as roads, electrical 
systems, communications services, etc. – that enable local, regional, national, and 
international economic activity; and 

Controlled Technical Data - technical, biological, chemical, and military-related data and 
research that could be considered of national interest and be under foreign export restrictions. 

It may be possible to work with publicly released annualized and cleansed data within these 
areas without a problem, but the majority of granular data from which significant insight can 
be gleaned is protected.  In most instances, scientists, researchers, and other authorized 
developers take years to appropriately acquire the expertise, build the personal relationships, 
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and construct the technical, procedural and legal infrastructure to work with the granular data 
before implementing any approach. Even using publicly released datasets within these areas 
can be restricted, requiring either registration, the recognition of or affiliation to an 
appropriate data governing body, background checks, or all three before authorization is 
granted. 

The second group of data that raises privacy and security concerns is personal data. 
Commonly referred to as Personally Identifiable Information (PII), it is any data that 
distinguishes individuals from each other. It is also the data that an increasing number of 
digital approaches rely on, and the data whose use tends to raise the most public ire. Personal 
data could include but is not limited to an individual‘s: 

 Government issued record data (social security numbers, national or state identity 
numbers, passport records, vehicle data, voting records, etc.); 

 Law enforcement data (criminal records, legal proceedings, etc.); 

 Personal financial, employment, medical, and education data; 
 Communication records (phone numbers, texts data, message records, content of 

conversations, time and location, etc.); 
 Travel data (when and where traveling, carriers used, etc.); 
 Networks and memberships (family, friends, interests, group affiliations, etc.); 

 Location data (where a person is and when); 
 Basic contact information (name, address, e-mail, telephone, fax, twitter handles, 

etc.); 
 Internet data (search histories, website visits, click rates, likes, site forwards, 

comments, etc.); 
 Media data (which shows you‘re watching, music you‘re listening to, books or 

magazines you‘re reading, etc.); 
 Transaction data (what you‘re buying or selling, who you‘re doing business with, 

where, etc.); and 

 Bio and activity data (from personal mobile and wearable devices). 
 

In industries where being responsible for handling highly detailed personal data is the 
established business norm – such as in the education, medical and financial fields – there are 
already government regulations, business practices and data privacy and security laws that 
protect data from unauthorized usage, including across new digital platforms. But in many 
other industries, particularly in data driven industries where personal data has been treated as 
proprietary data and become the foundation of business models, there is currently little to no 
regulation. In the new normal, the more that a data approach depends on data actively or 
passively collected on individuals, the more likely that consumers will speak up and demand 
privacy protection, even if they previously gave some form of tacit approval to use their data. 

` Despite this new landscape, there are lots of different ways to use personal data, some 
of which may not trigger significant privacy or security concerns. This is particularly true in 
cases where individuals willingly provide their data or data cannot be attributed to an 
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individual. Whether individuals remain neutral to data approaches tends to be related to the 
level of control they feel they have over how their personal data is used. Some organizations 
that collect personal data extensively, such as Facebook and Google, work to increasingly 
provide their users with methods to control their own data. But for others, the lack of due 
diligence on data privacy in their approaches has already had their effect. 

A third category of data needing privacy consideration is the data related to good 
people working in difficult or dangerous places. Activists, journalists, politicians, whistle-
blowers, business owners, and others working in contentious areas and conflict zones need 
secure means to communicate and share data without fear of retribution and personal harm. 

4.6  FIVE C’ S OF DATA SCIENCE 
What does it take to build a good data product or service? Not just a product or service 

that‘s useful, or one that‘s commercially viable, but one that uses data ethically and 

responsibly. 

Users lose trust because they feel abused by malicious ads; they feel abused by fake and 
misleading content, and they feel abused by ―act first, and apologize profusely later‖ cultures 

at many of the major online companies. And users ought to feel abused by many abuses they 
don‘t even know about. Why was their insurance claim denied? Why weren‘t they approved 

for that loan? Were those decisions made by a system that was trained on biased data? The 
slogan goes, ―Move fast and break things.‖ But what if what gets broken is society? 

Data collection is a big business. Data is valuable: ―the new oil,‖ as the Economist 

proclaimed. We‘ve known that for some time. But the public provides the data under the 

assumption that we, the public, benefit from it. We also assume that data is collected and 
stored responsibly, and those who supply the data won‘t be harmed. Essentially, it‘s a model 
of trust. But how do you restore trust once it‘s been broken? It‘s no use pretending that you‘re 

trustworthy when your actions have proven that you aren‘t. The only way to get trust back is 

to be trustworthy, and regaining that trust once you‘ve lost it takes time. 

There‘s no simple way to regain users‘ trust, but a ―golden rule‖ for data as a starting 

point: ―treat others‘ data as data scientist would like other to treat  their data.‖ However, 

implementing a ―golden rule‖ in the actual research and development process is challenging. 
The golden rule isn‘t enough by itself. There has to be certain guidelines to force discussions 

with the application development teams, application users, and those who might be harmed 
by the collection and use of data. Five framing guidelines help us think about building data 
products. We call them the five Cs: consent, clarity, consistency, control (and transparency), 
and consequences (and harm).  

4.6.1 Consent 
The trust between the people who are providing data and the people who are using it cannot 
be established without agreement about what data is being collected and how that data will be 
used . Agreement starts with obtaining consent to collect and use data. Unfortunately, the 
agreements between a service‘s users (people whose data is collected) and the service itself 
(which uses the data in many ways) are binary (meaning that you either accept or decline) 
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and lack clarity. In business, when contracts are being negotiated between two parties, there 
are multiple iterations (redlines) before the contract is settled. But when a user is agreeing to 
a contract with a data service, you either accept the terms or you don‘t get access. It‘s non-
negotiable. 

 Data is frequently collected, used, and sold without consent. This includes 
organizations like Acxiom, Equifax, Experian, and Transunion, who collect data to assess 
financial risk, but many common brands also connect data without consent. In Europe, 
Google collected data from cameras mounted on cars to develop new mapping products. 
AT&T and Comcast both used cable set top boxes to collect data about their users, and 
Samsung collected voice recordings from TVs that respond to voice commands. 

4.6.2 Clarity 
 Clarity is closely related to consent. Users must have clarity about what data they are 
providing, what is going to be done with the data, and any downstream consequences of how 
their data is used. All too often, explanations of what data is collected or being sold are 
buried in lengthy legal documents that are rarely read carefully, if at all. Observant readers of 
Eventbrite‘s user agreement recently discovered that listing an event gave the company the 

right to send a video team, and exclusive copyright to the recordings. And the only way to opt 
out was by writing to the company. The backlash was swift once people realized the potential 
impact, and Eventbrite removed the language. 

Facebook users who played Cambridge Analytica‘s ―This Is Your Digital Life‖ game may 

have understood that they were giving up their data; after all, they were answering questions, 
and those answers certainly went somewhere. But did they understand how that data might be 
used? Or that they were giving access to their friends‘ data behind the scenes? That‘s buried 

deep in Facebook‘s privacy settings. It really doesn‘t matter which service you use; you 

rarely get a simple explanation of what the service is doing with your data, and what 
consequences their actions might have. Unfortunately, the process of consent is often used to 
obfuscate the details and implications of what users may be agreeing to. And once data has 
escaped, there is no recourse.  

4.6.3 Consistency and Trust 
 Trust requires consistency over time. You can‘t trust someone who is unpredictable. 

They may have the best intentions, but they may not honor those intentions when you need 
them to. Or they may interpret their intentions in a strange and unpredictable way. And once 
broken, rebuilding trust may take a long time. Restoring trust requires a prolonged period of 
consistent behavior. 

 Consistency, and therefore trust, can be broken either explicitly or implicitly. An 
organization that exposes user data can do so intentionally or unintentionally. In the past 
years, we‘ve seen many security incidents in which customer data was stolen: Yahoo!, 

Target, Anthem, local hospitals, government data, and data brokers like Experian, the list 
grows longer each day. Failing to safeguard customer data breaks trust—and safeguarding 
data means nothing if not consistency over time. 
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4.6.4 Control and Transparency 
 All too often, users have no effective control over how their data is used. They are 
given all-or-nothing choices, or a convoluted set of options that make controlling access 
overwhelming and confusing. It‘s often impossible to reduce the amount of data collected, or 

to have data deleted later. A major part of the shift in data privacy rights is moving to give 
users greater control of their data. For example, Europe‘s General Data Protection Regulation 

(GDPR) requires a user‘s data to be provided to them at their request and removed from the 
system if they so desire. 

4.6.5 Consequences 
 Data products are designed to add value for a particular user or system. As these 
products increase in sophistication, and have broader societal implications, it is essential to 
ask whether the data that is being collected could cause harm to an individual or a group. The 
unforeseen consequences and the ―unknown unknowns‖ about using data and combining data 

sets have been witnessed frequently. Risks can never be eliminated completely. However, 
many unforeseen consequences and unknown unknowns could be foreseen and known, if 
only people had tried. All too often, unknown unknowns are unknown because we don‘t want 

to know. 

 While Strava and AOL triggered a chain of unforeseen consequences by releasing 
their data, it‘s important to understand that their data had the potential to be dangerous even if 

it wasn‘t released publicly. Collecting data that may seem innocuous and combining it with 

other data sets has real-world implications. It‘s easy to argue that Strava shouldn‘t have 

produced this product, or that AOL shouldn‘t have released their search data, but that ignores 

the data‘s potential for good. In both cases, well-intentioned data scientists were looking to 
help others. The problem is that they didn‘t think through the consequences and the potential 

risks. 

 Many data sets that could provide tremendous benefits remain locked up on servers. 
Medical data that is fragmented across multiple institutions limits the pace of research. And 
the data held on traffic from ride-sharing and gps/mapping companies could transform 
approaches for traffic safety and congestion. But opening up that data to researchers requires 
careful planning. 

4.7 DIVERSITY – INCLUSION 

Reports of AI gone wrong abound, and Responsible AI has started to take a foothold in 
business — Gartner has even added Responsible AI as a new category on its Hype Cycle for 
Emerging Technologies. Yet when talking about solutions, increasing diversity and making 
data science a more inclusive field unfortunately don‘t often top the list. Noelle Silver, Head 

of Instruction, Data Science, Analytics, and Full Stack Web Development at HackerU, is 
looking to change that. 

A 2018 study revealed that only 15% of data scientists are women, and sadly, a 2020 study 
found exactly the same results: it seems we haven‘t managed to move the needle. While 
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diversity obviously encompasses more than just women, few studies have been able to 
quantify other types of representation in the field. Inclusivity is similarly difficult to quantify, 
both in terms of people working on technology and the ways in which technology can be 
accessed by all. But that doesn‘t mean there aren‘t solutions. 

Problem 

―The reality is that when we train machine learning models with a bunch of data, it‘s going to 

make predictions based on that data. If that data comes from a room of people that look the 
same, talk the same, act the same, they‘re all friends — it‘s not a bad scenario. In the 

moment, you feel like things are good. No one is really seeing any problems; you don‘t feel 

any friction. It‘s very misleading, especially in artificial intelligence. So, you go to market.  

The problem, though, is not everyone looks like you, or talks like you, or thinks like you. So 
even though you found a community of people that built this software that thinks the same, as 
soon as you go to market and someone other than that starts using it, they start to feel that 
friction.‖ 

Solution 

Of course, there‘s no easy, magic bullet solution to this problem, but foundations of a good 
start are: 

 Committing the time and resources to practice inclusive engineering: This includes, 
but certainly isn‘t limited to, doing whatever it takes to collect and use diverse 

datasets. 
 Create an experience that welcomes more people to the field: This might mean 

looking at everything from education to hiring practices. 

 Think beyond regulations: Simply being compliant doesn‘t necessarily mean 

experiences are optimized. 

4.8 FUTURE TRENDS 

Trend 1: Smarter, faster, more responsible AI 

Within the current pandemic context, AI techniques such as machine learning (ML), 
optimization and natural language processing (NLP) are providing vital insights and 
predictions about the spread of the virus and the effectiveness and impact of 
countermeasures. AI and machine learning are critical realigning supply and the supply chain 
to new demand patterns. 

Trend 2: Decline of the dashboard 

Dynamic data stories with more automated and consumerized experiences will replace visual, 
point-and-click authoring and exploration. As a result, the amount of time users spends using 
predefined dashboards will decline. The shift to in-context data stories means that the most 
relevant insights will stream to each user based on their context, role or use. These dynamic 
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insights leverage technologies such as augmented analytics, NLP, streaming anomaly 
detection and collaboration. 

Trend 3: Decision intelligence 

Decision intelligence brings together a number of disciplines, including decision management 
and decision support. It encompasses applications in the field of complex adaptive systems 
that bring together multiple traditional and advanced disciplines. It provides a framework to 
help data and analytics leaders design, compose, model, align, execute, monitor and tune 
decision models and processes in the context of business outcomes and behavior. Explore 
using decision management and modeling technology when decisions need multiple logical 
and mathematical techniques, must be automated or semi-automated, or must be documented 
and audited. 

Trend 4: X analytics 

Gartner coined the term ―X analytics‖ to be an umbrella term, where X is the data variable for 

a range of different structured and unstructured content such as text analytics, video analytics, 
audio analytics, etc. 

Data and analytics leaders use X analytics to solve society‘s toughest challenges, including 

climate change, disease prevention and wildlife protection with analytics capabilities 
available from their existing vendors, such as cloud vendors for image, video and voice 
analytics, but recognize that innovation will likely come from small disruptive startups and 
cloud providers. 

Trend 5: Augmented data management 

Augmented data management uses ML and AI techniques to optimize and improve 
operations.  It also converts metadata from being used in auditing, lineage and reporting to 
powering dynamic systems. Augmented data management products can examine large 
samples of operational data, including actual queries, performance data and schemas. Using 
the existing usage and workload data, an augmented engine can tune operations and optimize 
configuration, security and performance. Data and analytics leaders should look for 
augmented data management enabling active metadata to simplify and consolidate their 
architectures, and also increase automation in their redundant data management tasks. 

Trend 6: Cloud is a given 

As data and analytics moves to the cloud, data and analytics leaders still struggle to align the 
right services to the right use cases, which leads to unnecessary increased governance and 
integration overhead. Data and analytics leaders need to prioritize workloads that can exploit 
cloud capabilities and focus on cost optimization and other benefits such as change and 
innovation acceleration when moving to cloud. 

Trend 7: Data and analytics worlds collide 

The collision of data and analytics will increase interaction and collaboration between 
historically separate data and analytics roles. This impacts not only the technologies and 
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capabilities provided, but also the people and processes that support and use them. The 
spectrum of roles will extend from traditional data and analytics roles in IT to information 
explorer, consumer and citizen developer as an example. To turn the collision into a 
constructive convergence, incorporate both data and analytics tools and capabilities into the 
analytics stack. 

Trend 8: Data marketplaces and exchanges 

Data marketplaces and exchanges provide single platforms to consolidate third-party data 
offerings. These marketplaces and exchanges provide centralized availability and access (to 
X analytics and other unique data sets, for example) that create economies of scale to reduce 
costs for third-party data. To monetize data assets through data marketplaces, data and 
analytics leaders should establish a fair and transparent methodology by defining a data 
governance principle that ecosystems partners can rely on. 

Trend 9: Blockchain in data and analytics 

Blockchain technologies address two challenges in data and analytics. First, blockchain 
provides the full lineage of assets and transactions. Second, blockchain provides transparency 
for complex networks of participants. Data and analytics should position blockchain 
technologies as supplementary to their existing data management infrastructure by 
highlighting the capabilities mismatch between data management infrastructure and 
blockchain technologies. 

Trend 10: Relationships form the foundation of data and analytics value 

Graph analytics is a set of analytic techniques that allows for the exploration of relationships 
between entities of interest such as organizations, people and transactions. It helps data and 
analytics leaders find unknown relationships in data and review data not easily analyzed with 
traditional analytics. 

4.9 SUMMARY 
 When combined with ML algorithms, these technologies can be used to comb through 
thousands of data sources and documents that could help medical and public health experts 
rapidly discover new possible treatments or factors that contribute to more negative outcomes 
for some patients. 
Data and analytics leaders need to evaluate opportunities to incorporate graph analytics into 
their analytics portfolios and applications to uncover hidden patterns and relationships. In 
addition, consider investigating how graph algorithms and technologies can improve your AI 
and ML initiatives. 

4.10 PRACTICE QUESTIONS 
Q1. Write a short note on Data Science Ethics.  
Q2. What are the privacy aspects of data? 
Q3. What are the five C‘s  of data Science 
Q4. Discuss briefly the future trends in Data Science. 
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5.0 OBJECTIVES 
The main goal of this module is to help students learn, understand and practice the data 
science approaches, which include the study of latest data science tools with latest 
programming languages. The main objectives of this module are data wrangling which 
includes data discovery, structuring, cleaning, enriching, validating and publishing, 
combining and merging datasets, data reshaping, pivoting, transformation, string 
manipulation operations and regular expression. 

 
5.1 INTRODUCTION  
Data science become a buzzword that everyone talks about the data science. Data science is 
an interdisciplinary field that combines different domain expertise, computer programming 
skills, mathematics and statistical knowledge to find or extract the meaningful or unknown 
patterns from unstructured and structure dataset. 

Data science is useful for extraction, preparation, analysis and visualization of various 
information. Various scientific methods can be applied to get insight in data.  

Data science is all about using data to solve problems. Data has become the fuel of industries. 
It is most demandable field of 21st century. Every industry require data to functioning, 
searching, marketing, growing, expanding their business.  

The application of areas of data science are health care, fraud detection, disease predicting, 
real time shipping routes, speech recognition, targeting advertising, gaming and many more. 

5.2 DATA WRANGLING  
Data wrangling is a key component of any data science project. Data wrangling is a process 
where one transforms “row” data for making it more suitable for analysis and it will improve 
the quality of the data. Data wrangling is the process of collecting, gathering and 
transforming of raw data into appropriate format for accessing, analyzing, easy understanding 
and further processing for better and quick decision making. It is also known as Data 
Munging or Data Pre-Processing. 

Data wrangling is a crucial first steps in the preparation of data for broad analysis of huge 
amount of data or big data. It requires significant amount of time and efforts. If data 
wrangling is properly conducted, it gives you insights into the nature of the data. It is not just 
a single time process but it is an iterative or repetitive process. Each step in the data 
wrangling process exposes the new potential ways for the data re-wrangling towards deriving 
the goal of complex data manipulation and analysis. 

5.2.1 Steps for Data Wrangling 

Data wrangling process includes six core activities: 

 Discovery 
 Structuring  
 Cleaning 
 Enriching 
 Validating 



 Publishing 
 

 Discovery: 

Data discovering is an umbrella term. It describes the process to understand the 
dataset and insight into it. It involves the collection and evaluation of data from 
various sources and is often used to identify the spot trends and detecting the 
patterns of the data and gain instant insight.  

Now a day‟s large business organization or companies have a large amount of 
data related to the customers, suppliers, production, sells, marketing etc. 

For example, if a company have a customer database, you can identify that the 
most of the customers are from which part of the city or state or country. 

 Structuring: 

Data is coming from the various sources with the difference formats. Structuring 
is necessary because of the different size and shape of the data. Data structuring is 
the process or actions that change the form or schema of the dataset. Data splitting 
into the columns, deleting some fields from the dataset, pivoting rows are the form 
of data structuring.  

 Cleaning: 

Before start the data manipulation or data analysis, you need to perform the data 
cleaning. Data cleaning is the process to identify the data quality related issues, 
such as missing or mismatched values, duplicate records etc. and apply the 
appropriate transformation to correct, replace or delete those values or records 
from the dataset to make high quality of data. 

 Enriching: 

The data is useful for decision making process in the business. The data needed to 
take business related decision can be stored into multiple files. To gather all 
necessary insights into single file and you need to enriched your existing dataset 
by performing joining and aggregating multiple data sources. 

 Validating: 

After completion of data cleaning and data enriching, you need to check the 
accuracy of the data. If dataset is not accurate, it might be creating a problem. It is 
necessary to do the data validation. This is the final check that any missing or 
mismatched data was not corrected during the transformation process. It is also 
need to validate that output dataset has the intended structure and content before 
publishing it. 

 Publishing: 

After successful completion of data discovering, structuring, cleaning, enriching 
and validating‟s, it‟s a time to published the wrangled output data for the further 

analytics processes, if any. The published data can be uploaded in the 



organization‟s software or store into the file in a specific location where 
organizations peoples knows it is ready to use.  

 
5.2.2 Tools for Data Wrangling 

There are some tools available for the data wrangling. Some of the popular tools are 
as follow: 

 Python  
Python is a most popular general-purpose high-level programming language. 
There are many popular Python libraries available for data science. The pandas is 
a most popular and open source library and it becomes a game changer for data 
science. It is a very fast, flexible, powerful and easy to used library which includes 
Data Frame to perform more complex operation such as data joining, data 
merging, data transformation etc. for in data science. 

 R 
R is also popular, open source and more power tool for data science and 
management. It also supports many libraries such as dplyr, tidyr, ggplot2 etc. for 
data manipulation and data visualization. 

 Tabula  
Tabula is a tool for liberating data tables trapped inside the PDF files. It allows the 
user to upload the files in PDF format and extract the selected rows and columns 
from any tables available in the PDF file. It supports to extract this data from PDF 
to CSV or Microsoft Excel file format. 

 DataWrangler 
It is an interactive tool for data cleaning. It takes the read word data and transform 
it into data tables which can be used for further processing or analysis. It also 
supports to export the data tables in Microsoft Excel, R, Tabula etc. 

 OpenRefine 
OpenRefine, previously known as GoogleRefine. It is a Java based open source 
powerful tool for manipulates the huge data. It is used for data loading, 
understanding, cleaning and transforming from one format to another format. It 
also supports to extending the data with web services 

 

. 

 CSVKit 
CSVKit is a suite for command line tools for converting and working with CSV 
file. It supports the covert the data from Excel to CSV, JSON to CSV, query with 
SQL etc. 

 

 



 
5.3 COMBINING DATASET 

Combining is the process to put two or more dataset together for further processing. The 
pandas library of Python provides easy functionality to combining the dataset together. Here 
we learn the combining dataset with concat, merge and join functions using pandas library. 

 Concat: The concat() function is used for combining dataset across the rows or 
columns. 

 Merge: The merge() function is used for combining the dataset on common columns. 
 Join: The join() function is used for combining the dataset on key column or an 

index. 

5.4 CONCATENATING DATASET 
The “concat” function is used to perform the concatenation operation with the data frame 
along with an axis. The datasets are just stitched together along with axis (rows axis and 
column axis). Here we concatenate the datasets using pandas.  

Syntax:  

pd.concat(objs, axis, join, join_axes, ignore_index, keys) 

Here,  

 objs: This is a sequence or mapping of Series, DataFrame, objects. 
 axis: This is an axis to concatenate. This value is {0, 1, ...}, default is 0.  
 join: This is used how to handle indexes on another axis(es). This value is {„inner‟, 

„outer‟}, default is „outer‟. The outer is used for union operation and inner is used for 
intersection operation. 

 join_axes: This is the list of index objects. Its specific indexes to use for the other (n-
1) axes instead of performing inner/outer set logic. 

 ignore_index: This value is Boolean type, default is False. If this value is True, do 
not use the index values on the concatenation axis. The resulting axis will be labeled 
0, ..., n-1. 

 keys: This is a sequence to add an identifier to the result indexes, default is None. 

Example: Here we perform the concatenation operation using two different data frames 
i.e. df1 and df2. 

The below code creates the two different data frame df1 and df2. 

# Importing pandas library 
import pandas as pd 
 
# First dataframe creation 
df1 = pd.DataFrame({ 
 "Name":["Rahul","Shreya","Pankaj","Monika","Kalpesh"], 
  "Age":[20, 19, 24, 25, 25], 
 "Gender":["Male","Female","Male","Male","Female"], 



 "Course":["B.E.","B.Tech.","MCA","M.Tech.","M.E."]}, 
 index = [1, 2, 3, 4, 5]) 
 
# Second dataframe creation 
df2 = pd.DataFrame({ 
 "Name":["Mayank","Jalpa","Sanjana","Vimal","Raj"], 
 "Age":[22, 21, 24, 26, 23], 
 "Gender":["Male","Female","Female","Male","Male"], 
 "Course":["MBA","MCA","B.E.","B.Tech.","M.Sc."]}, 
 index = [1, 2, 3, 4, 5]) 

 
Now we display both data frames df1 and df2.  
The below code will display data frame df1. 

# Display first dataframe 
df1 

The above code will give the following output. 

 Name Age Gender Course 
1 Rahul 20 Male B.E. 
2 Shreya 19 Female B.Tech. 
3 Pankaj 24 Male MCA 
4 Monika 25 Male M.Tech. 
5 Kalpesh 25 Female M.E. 

The below code will display data frame df2. 

# Display second dataframe 
df2 

 
The above code will give the following output. 

 Name Age Gender Course 
1 Mayank 22 Male MBA 
2 Jalpa 21 Female MCA 
3 Sanjana 24 Female B.E. 
4 Vimal 26 Male B.Tech. 
5 Raj 23 Male M.Sc. 

Now we perform the concatenation operation on both data frames.  
The below code will perform the concatenation operation on both the data frame df1 and 
df2. 

# Concatenation of both dataframe 
df3 = pd.concat([df1, df2]) 
df3 

 



The above code will give the following output, which concatenate the five records of 
data frame df1 and five records of data frame df2 into single data frame df3 with ten 
records. 

 Name Age Gender Course 
1 Rahul 20 Male B.E. 
2 Shreya 19 Female B.Tech. 
3 Pankaj 24 Male MCA 
4 Monika 25 Male M.Tech. 
5 Kalpesh 25 Female M.E. 
1 Mayank 22 Male MBA 
2 Jalpa 21 Female MCA 
3 Sanjana 24 Female B.E. 
4 Vimal 26 Male B.Tech. 
5 Raj 23 Male M.Sc. 

 
Now we perform the concatenation with axis as an argument.  
The below code will perform the concatenation operation on both data frame df1 and df2 
with using axis as an argument. 

# Concatenation of both dataframe with axis as an argument 
df3 = pd.concat([df1, df2],axis=1) 
df3 

 
The above code will give the following output, which concatenate the data frame df1 and 
data frame df2 into single data frame df3 horizontally with axis=1 as an argument. 

SN Name Age Gender Course Name Age Gender Course 

1 Rahul 20 Male B.E. Mayank 22 Male MBA 

2 Shreya 19 Female B.Tech. Jalpa 21 Female MCA 

3 Pankaj 24 Male MCA Sanjana 24 Female B.E. 

4 Monika 25 Male M.Tech. Vimal 26 Male B.Tech. 

5 Kalpesh 25 Female M.E. Raj 23 Male M.Sc. 
Now we perform the concatenation with keys as an argument which is associated with 
specific keys.   
The below code will perform the concatenation operation on both data frame df1 and df2 
with keys as an argument. 

# Concatenation of both dataframe with keys as an argument 
df3 = pd.concat([df1, df2], keys=['x','y']) 
df3 

 



The above code will give the following output, which concatenate the data frame df1 and 
data frame df2 into single data frame df3 with x and y as keys argument. 

  Name Age Gender Course 
x 1 Rahul 20 Male B.E. 
 2 Shreya 19 Female B.Tech. 
 3 Pankaj 24 Male MCA 
 4 Monika 25 Male M.Tech. 
 5 Kalpesh 25 Female M.E. 
y 1 Mayank 22 Male MBA 
 2 Jalpa 21 Female MCA 
 3 Sanjana 24 Female B.E. 
 4 Vimal 26 Male B.Tech. 

 5 Raj 23 Male M.Sc. 
 
Now we perform the concatenation with keys and ignore_index as an argument. It 
follows its own indexing if we set ignore_index is True.  
The below code will perform the concatenation operation on both data frame df1 and df2 
with keys and ignore_index as an argument. 

# Concatenation of both dataframe using keys argument 
df3 = pd.concat([df1, df2], keys=['x','y'], ignore_index=True) 
df3 

 
The above code will give the following output, which concatenate data frame df1 and 
data frame df2 into single data frame df3 using x and y as keys arguments and 
ignore_index=True argument. 
 

 Name Age Gender Course 
0 Rahul 20 Male B.E. 
1 Shreya 19 Female B.Tech. 
2 Pankaj 24 Male MCA 
3 Monika 25 Male M.Tech. 
4 Kalpesh 25 Female M.E. 
5 Mayank 22 Male MBA 
6 Jalpa 21 Female MCA 
7 Sanjana 24 Female B.E. 
8 Vimal 26 Male B.Tech. 
9 Raj 23 Male M.Sc. 

 
Now we perform the concatenation using append() function.  
The below code will perform the concatenation operation on both data frame df1 and 
df2. The data frame df2 is appended with the data frame df1. 



# Concatenation of both dataframe using append 
df1.append(df2) 

 
The above code will give the following output, which concatenate the data frame df2 
with the data frame df1. 

 Name Age Gender Course 
1 Rahul 20 Male B.E. 
2 Shreya 19 Female B.Tech. 
3 Pankaj 24 Male MCA 
4 Monika 25 Male M.Tech. 
5 Kalpesh 25 Female M.E. 
1 Mayank 22 Male MBA 
2 Jalpa 21 Female MCA 
3 Sanjana 24 Female B.E. 
4 Vimal 26 Male B.Tech. 
5 Raj 23 Male M.Sc. 

 
5.5 MERGING DATASET 
The word “merge” and “join” both are used relatively interchangeable in SQL, R and 
Pandas. Both merge and join doing the similar things, but there are separate “merge” and 

“join” functions in Pandas. 

The merging/joining is the process of bringing two or more datasets together into single 
dataset and aligning the rows from each dataset based on the common attributes or columns. 

The „merge‟ function is used to perform the merging operation with the data frame. Here we 
merge the datasets using pandas.  

Syntax:  

pd.merge(left, right, how, on, left_on, right_on, left_index, right_index, sort) 

Here,  

 left: This is the first data frame. 
 right: This is the second data frame. 
 how: This is the method how to perform the merge operation. The values of this field 

are one of „left‟, „right‟, „inner‟, „outer‟, default is „inner‟. 
 On: This is the name of column in which action to be perform. This column must be 

available in both left and right data frame object. 
 left_on: This is the name of column from left data frame to use as keys.  
 right_on: This is the name of column from right data frame to use as keys.  
 left_index: This is using the index (row label) from left data frame as its join keys, if 

it is True. 
 right_index: This is used the index (row label) from right data frame as its join keys, 

if it is True. 



 sort: This is use to sort the result data frame by join keys in specific order. The value 
of this field is Boolean, default is True. 

Example: Here we perform the merge operation using two different data frames i.e. left 
and right. 

The below code creates two different data frames left and right. 

# Importing pandas library 
import pandas as pd 
 
# Left dataframe creation 
left = pd.DataFrame({ 
 "Rno":[1, 2, 3, 4, 5], 
 "Name":["Rahul","Shreya","Pankaj","Monika","Kalpesh"], 
 "Course":["B.E.","B.Tech.","MCA","M.Tech.","M.E."]}) 
 
# Right dataframe creation 
right = pd.DataFrame({  
 "Rno":[1, 2, 3, 4, 5], 
 "Name":["Mayank","Jalpa","Sanjana","Vimal","Raj"], 
 "Course":["B.E.","MBA","MCA","B.Tech.","M.Sc."]}) 

 
Now we display both data frame left and right.  

The below code will display data frame left. 

# Display left dataframe 
left 

The above code will give the following output. 

 Rno Name Course 
0 1 Rahul B.E. 
1 2 Shreya B.Tech. 
2 3 Pankaj MCA 
3 4 Monika M.Tech. 
4 5 Kalpesh M.E. 

 
The below code will display the data frame right. 

# Display right dataframe 
right 

 
 
 
 
 



The above code will give the following output. 

 Rno Name Course 
0 1 Mayank B.E. 
1 2 Jalpa MBA 
2 3 Sanjana MCA 
3 4 Vimal B.Tech. 
4 5 Raj M.Sc. 

 
Now we perform the merge operation on both data frame using on as an argument.  

The below code will perform the merge operation on both data frame left and right using 
single on key as an argument. 

# Merge both left and right dataframe using single on key 
pd.merge(left, right, on='Rno') 

 
The above code will give the following output, which merge both data frame left and 
right using single on key as an argument. 

 Rno Name_x Course_x Name_y Course_y 
0 1 Rahul B.E. Mayank B.E. 
1 2 Shreya B.Tech. Jalpa MBA 
2 3 Pankaj MCA Sanjana MCA 
3 4 Monika M.Tech. Vimal B.Tech. 
4 5 Kalpesh M.E. Raj M.Sc. 

 
The below code will perform the merge operation on both data frame left and right using 
multiple on key as an argument. 

# Merge left and right dataframe using multiple on keys 
pd.merge(left, right, on=['Rno','Course']) 

 
The above code will give the following output, which merge both data frame left and 
right using multiple on key as an argument. 

 Rno Name_x Course Name_y 
0 1 Rahul B.E. Mayank 
1 3 Pankaj MCA Sanjana 

 
Now we perform the merge operation using how as an argument. This argument specifies 
how to determine which keys are to be included in the resulting data frame or table. If the 
combination does not appear in any of the data frame or table, NA will be display in joined 
table. 

The merge methods are same as SQL join equivalent as below: 



Merge Method SQL Join Equivalent Description 

left Left Outer Join Use keys from left object 

right Right Outer Join Use keys from right object 

inner Inner Join Use intersection of keys 

outer Full Outer Join Use unions of keys 

It will represent graphically as follows: 

 

The below code will perform the merge operation on both data frame left and right on course 
using how=„left‟ method. 

# Merge both left and right dataframe using on and how 
pd.merge(left, right, on='Course', how='left') 

 
The above code will give the following output, which merge both data frame left and right 
using left join. It will display left data frame records plus common records as follows: 

 Rno_x Name_x Course Rno_y Name_y 
0 1 Rahul B.E. 1.0 Mayank 
1 2 Shreya B.Tech. 4.0 Vimal 
2 3 Pankaj MCA 3.0 Sanjana 
3 4 Monika M.Tech. NaN NaN 
4 5 Kalpesh M.E. NaN NaN 

 
The below code will perform the merge operation on both data frame left and right on course 
using how=„right‟ method. 

# Merge both left and right dataframe using on and how 
pd.merge(left, right, on='Course', how='right') 

 
The above code will give the following output, which merge both data frame left and right 
using right join. It will display right data frame records plus common records as follows: 

 



 Rno_x Name_x Course Rno_y Name_y 
0 1.0 Rahul B.E. 1 Mayank 
1 NaN NaN MBA 2 Jalpa 
2 3.0 Pankaj MCA 3 Sanjana 
3 2.0 Shreya B.Tech. 4 Vimal 
4 NaN NaN M.Sc. 5 Raj 

 
The below code will perform the merge operation on both data frame left and right on course 
using how=„inner‟ method. 

# Merge both left and right dataframe using on and how 
pd.merge(left, right, on='Course', how='inner') 

 
The above code will give the following output, which merge both data frame left and right 
using inner join. It performs the intersection operation on both data frame, which will display 
only common records as follows: 

 Rno_x Name_x Course Rno_y Name_y 
0 1 Rahul B.E. 1 Mayank 
1 2 Shreya B.Tech. 4 Vimal 
2 3 Pankaj MCA 3 Sanjana 

 
The below code will perform the merge operation on both data frame left and right on course 
using how=„over‟ method. 

# Merge both left and right dataframe using on and how 
pd.merge(left, right, on='Course', how='outer') 

 
The above code will give the following output, which merge both data frame left and right 
using outer join. It performs the union operation on both data frame, which will display left 
data frame records, right data frame records and common records as follows: 

 Rno_x Name_x Course Rno_y Name_y 
0 1.0 Rahul B.E. 1.0 Mayank 
1 2.0 Shreya B.Tech. 4.0 Vimal 
2 3.0 Pankaj MCA 3.0 Sanjana 
3 4.0 Monika M.Tech. NaN NaN 
4 5.0 Kalpesh M.E. NaN NaN 
5 NaN NaN MBA 2.0 Jalpa 
6 NaN NaN M.Sc. 5.0 Raj 

5.6 RESHAPING DATASET 
The way in which dataset is arranged into rows and columns is referred as the shape of data. 
In a dataset, each row represents one observation in a vertical or long data and each column is 
considered a variable with multiple distinct values. 



It is needed to convert or transform the dataset from one format to another format, which is 
called reshaping of dataset. 

Reshaping is the process to change the shape or structure of datasets, such as convert “wide” 
data tables into “long”. The below figure shows the reshaping process graphically.  

 

The data frame will be reshaped by using melt(), stack(), unstack() and pivot() functions as 
follows: 

The below code creates and display data frame df1. 

# Importing pandas library 
import pandas as pd 
 
# Dataframe creation 
df = pd.DataFrame({ 
 "Rno":[1, 2, 3, 4, 5], 
 "Name":["Rajan","Shital","Mayur","Mittal","Mahesh"], 
 "Age":[25, 27, 24, 25, 21]}) 
 
# Display dataframe 
df 

 
The data frame output as follows: 

 Rno Name Age 
0 1 Rajan 25 
1 2 Shital 27 
2 3 Mayur 24 
3 4 Mittal 25 
4 5 Mahesh 21 

5.6.1 Using melt() Function 

We can reshape the data frame using this function. This function is used to wide data 
frame columns into rows.  



The below code will perform the reshape operation using melt function. 

# Performing melt function on dataframe 
df.melt() 

 
The above code will give the following output. 

 Variable value 
0 Rno 1 
1 Rno 2 
2 Rno 3 
3 Rno 4 
4 Rno 5 
5 Name Rajan 
6 Name Shital 
7 Name Mayur 
8 Name Mittal 
9 Name Mahesh 
10 Age 25 
11 Age 27 
12 Age 24 
13 Age 25 
14 Age 21 

 

5.6.2 Using stack() and unstack() Function 

We can reshape the data frame using these functions. The stack() function is used to 
increase the level of index in a data frame.  

The below code will perform the reshape operation using stack function. 

# Performing stack function on dataframe 
df.stack() 

 
The above code will give the following output. 

0 Rno 1 
 Name Rajan 
 Age 25 
1 Rno 2 
 Name Shital 
 Age 27 
2 Rno 3 
 Name Mayur 
 Age 24 



3 Rno 4 
 Name Mittal 
 Age 25 
4 Rno 5 
 Name Mahesh 
 Age 21 

dtype: object 
 
The unstack()  function is used to do the revert back changes in a data frame was 
perform by the stack() function. 

The below code will perform the reshape operation using unstack function. 

# Performing unstack function on dataframe 
df.unstack() 

 
The above code will give the following output. 

Rno 0 1 
 1 2 
 2 3 
 3 4 
 4 5 

Name 0 Rajan 
 1 Shital 
 2 Mayur 
 3 Mittal 
 4 Mahesh 

Age 0 25 
 1 27 
 2 24 
 3 25 
 4 21 

dtype: object 
 

5.6.3 Using pivot() Function 

We can reshape the data frame using this function. This function is used to reshape 
the data frame based on the specified column in a data frame. 

The below code will perform the reshape operation on “Rno” column using pivot 
function. 

# Performing pivot function on dataframe 
df.pivot(columns='Rno') 



The above code will give the following output. 

 Name Age 

Rno 1 2 3 4 5 1 2 3 4 5 

0 Rajan NaN NaN NaN NaN 25.0 NaN NaN NaN NaN 

1 NaN Shital NaN NaN NaN NaN 27.0 NaN NaN NaN 

2 NaN NaN Mayur NaN NaN NaN NaN 24.0 NaN NaN 

3 NaN NaN NaN Mittal NaN NaN NaN NaN 25.0 NaN 

4 NaN NaN NaN NaN Mahesh NaN NaN NaN NaN 21.0 

 

5.7 DATA TRANSFORMATION 

Data is collected from the various sources and combine it into a unified data frame. This data 
frame has large number of columns with different data types.  

Data transformation is the process to transform or convert the data as per required format for 
further processing as and when needed.  

The data transformation includes add new columns, find NaN values, drop NaN, replace with 
mean value, field encoding and decoding, column splitting etc.  

5.7.1 Data Frame Creation 

To perform the various transformation operation on data, first we have to create the 
data frame. 

The below code will create and display a data frame df which contains the three 
columns such as “Name”, “Gender” and “City”. 

#importing pandas library  
import pandas as pd 
 
# Dataframe creation 
df = pd.DataFrame({ 
    "Name":["Jayesh Patel","Priya Shah","Vijay Sharma"], 
    "Gender": ["Male","Female","Male"], 
    "City": ["Rajkot","Delhi","Mumbai"]}) 
 
# Display dataframe  
df 

 
The above code will create and display data frame as follows: 

 

 



 Name Gender City 
0 Jayesh Patel Male Rajkot 
1 Priya Shah Female Delhi 
2 Vijay Sharma Male Mumbai 

5.7.2 Missing Value 

The dataset contains the many rows and columns. There are some cells in a dataset that have 
NA or empty cell. This is called missing data in a dataset. 

It is needed first to check that missing value before further processing. The common and very 
simple method to handle this missing value is to delete the rows which contain missing 
values.  

The below code will check the data to containing the missing value or not. 

df.isna().sum() 

 
Here there are no any missing values in each column so it returns zero value in each column. 

If there are any missing values in each column, it returns the number of missing values. 

Name      0 
Gender    0 
City      0 
dtype: int64 

 
The below code will drop all the rows which containing missing value. 

df = df.dropna() 

 
The below code will drop the columns where all elements are missing values.  

df.dropna(axis=1, how='all') 

 
The below code will drop the columns where any of the elements containing missing values.  

df.dropna(axis=1, how='any') 

 
The below code will keep only the rows which contains maximum two missing values.  

df.dropna(thresh=2) 

 
The below code will fill all missing values with mean value of the particular column. 

df.fillna(df.mean()) 

 



The below code will fill any missing values in specified column with median value of the 
particular column. Here we taken “Age” column for example. 

df['Age'].fillna(df['Age'].median()) 

 
The below code will fill any missing values in specified column with mode value of the 
particular column. Here we taken “Age” column for example. 

df['Age'].fillna(df['Age'].mode()) 

5.7.3 Encoding 

The dataset contains both numerical and categorical value. The categorical data is not much 
useful for data processing or analytics. It is needed to encoding the categorical value into 
numeric value. 

Data encoding is the process to convert a categorical variable into a numerical form.  

Here we discuss the label encoding which is simply converting each value in a column to a 
number. Our dataset has “Gender” column which has only two values “male” and “female” 

It encodes like this: 

 Male  0 
 Female  1 

The below code will replace the “Male” to 0 and “Female” to 1. 

df=df.Gender.replace({"Male":0,"Female":1}) 
df 

 
The above code will display data frame as follows: 

0    0 
1    1 
2    0 
Name: Gender, dtype: int64 

 

5.7.4 Inset New Column 

It is needed to add one or more columns in an existing dataset.  

The below code will insert a new column in a data frame and display it. 

df.insert(1, "Age", [21, 23, 24], True) 
df 

 
The above code will insert a new column “Age” with the values 21, 23 and 24 
respectively at second column in a data frame. The newly added column data frame 
will display as follow: 



 Name Age Gender City 
0 Jayesh Patel 21 Male Rajkot 
1 Priya Shah 23 Female Delhi 
2 Vijay Sharma 24 Male Mumbai 

 

5.7.5 Split Column 

It is needed to split one column into two or more different columns. The process to 
create two or more different columns from single column in a dataset is called column 
splitting. Sometimes the “Full Name” column of dataset may be need to split into 
“First Name” and “Last Name” as a separate column. 

The below code will split the column into two different columns and display new data 
frame. 

df[['First Name','Last Name']] = df.Name.str.split(expand=True) 
df 

 
The above code will create two different columns (i.e. First Name, Last Name) from 
the single column “Name” of dataset. The newly split data frame will be display as 
follow: 

 Name Age Gender City First Name Last Name 

0 Jayesh Patel 21 Male Rajkot Jayesh Patel 

1 Priya Shah 23 Female Delhi Priya Shah 

2 Vijay Sharma 24 Male Mumbai Vijay Sharma 

 
5.8 STRING MANIPULATION 
String manipulation is the process of handling and analyzing the strings. The various 
operation can be performed on string such as string modification, parsing of string, string 
conversion etc. The various in-built functions available for string manipulation in different 
language. He we perform some common string manipulation operations in Python. 

We take the following strings as an example. 

str1 = "Data Science" 
str2 = "using" 
str3 = "Python" 
str4 = "2021" 
str5 = "   Data Science   " 
 
 
 
 



Function Description Example Output 

capitalize() It converts the first character of 
string into upper case 

str2.capitalize() 'Using' 
 

casefold() It converts the string into lower case str1.casefold 
() 

'data science' 

center() It returns the string in center of the 
specified size  

str1.center 
(15) 

'  Data Science ' 

count() It returns the number of times a 
specified value occurs in a string 

str1.count("a") 2 

endswith() It returns true if the string ends with 
the specified value 

str1.endswith 
("nce") 

True 
 

find() It searches the string for a specified 
value and returns the position of 
where it is found 

str1.find("i") 7 

format() It formats the specified values in a 
string 

str4.format() '2021' 
 

index() It searches the string for a specified 
value and returns the position of 
where it was found 

str1.index("c") 6 
 

isalnum() It returns True if all the characters in 
a string are alphanumeric 

str4.isalnum() True  

isalpha() It returns True if all characters in a 
string are alphabet 

str2.isalpha() True 

isdigit() It returns True if all characters in a 
string are digit 

str4.isdigit() True 

islower() It returns True if all characters in a 
string are lower case 

str2.islower() True 

isnumeric() It returns True if all characters in a 
string are numeric 

str4.isnumeric 
() 

True 

isprintable() It returns True if all characters in a 
string are printable 

str1.isprintabl 
() 

True 

isspace() It returns True if all characters in a 
string are whitespaces 

str1.isspace() False 
 

istitle() It returns True if the string follows 
the title case rules 

str1.istitle() True 
 

isupper() It returns True if all characters in a 
string are upper case letter 

str1.isupper() False 
 

len(string) It returns the length of a string len(str1) 12 
lower() It converts the string into lower case str1.lower() 'data science' 

lstrip() It returns the string with left trim 
version 

str5.lstrip() 'Data Science   ' 

replace(old,n
ew) 

It replaces the old string with new 
string  

str1.replace("Science","
Analytics") 

'Data Analytics' 

rfind() It searches the string for a specified 
value and returns the last position of 

str1.rfind("e") 11 
 

https://www.w3schools.com/python/ref_string_casefold.asp
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where it was found 
rindex() It searches the string for a specified 

value and returns the last index 
position of where it is found 

str1.rindex("a") 3 
 

 

rstrip() It returns the string with right trim 
version 

str5.rstrip() '   Data Science' 

split() It splits the string with specified 
separator and returns a list 

str1.split(" ") ['Data', 'Science'] 

startswith() It returns true if the string starts with 
the specified value 

str3.startswith 
("P") 

True 
 

strip() It returns the both left and right trim 
version 

str5.strip() 'Data Science' 

swapcase() It returns the swaps cases, lower 
case becomes upper case and vice 
versa 

str1.swapcase 
() 

'dATA sCIENCE' 
 

title() It converts the first character of each 
word to upper case 

str2.title() 'Using' 

upper() It converts a string into upper case str1.upper() 'DATA SCIENCE' 

zfill() It returns the string with filled by 0 
for specified number of times in a 
string at the beginning 

str3.zfill(10) '0000Python' 
 

+ It concatenates or join the two 
strings 

str1+" "+str2+" "+str3 'Data Science using 
Python' 

* It repeated the string using n times str3 * 3 'PythonPythonPyth
on' 

string[0] It returns the first character of a 
string 

str1[0] 'D' 
 

string[7] It returns the eighth character of a 
string 

str1[7] 'i' 

string[2:8] It returns the string from third 
character to eighth character 

str1[2:8] 'ta Sci' 

string[3:] It returns the string from fourth 
character to last character 

str1[3:] 'a Science' 

string[:8] It returns the string from first 
character to eighth character 

str1[:8] 'Data Sci' 

string[-4:] It returns the last four character of a 
sting  

str1[-4:] 'ence' 

string[:-4] It removes the last four character of 
a string 

str1[:-4] 'Data Sci' 

 
5.9 REGULAR EXPRESSION 

Regular expression or RegEx is generally used to identify whether a sequence or 
character or pattern is exists in a given string or not. It is also used to identify the 
position of such pattern in a string or file. It mainly used to find and replace specific 
patterns in a string or file. It helps to manipulate text-based datasets. 

Python has a built-in package called re, to work with Regular Expression. 

https://www.w3schools.com/python/ref_string_rindex.asp
https://www.w3schools.com/python/ref_string_rstrip.asp


The re package of Python has set of functions to search the string for matching. The 
common Python RegEx functions are as follow: 

 

Function Description 
findall It returns a list of all match values. 
search It returns a match object if match found anywhere in the string. 
split It returns a list and spit the string where each match found 
sub It replaces the one or more matches with a specified string. 

 
5.9.1 The findall() Function 

This function returns a list which contains all match values. 
 
Example:  

import re 
string = "Working with Data Science using Python" 
result = re.findall("th",string) 
result 

 
The list contains all match values in an order of they are found. 
Output: 

['th', 'th'] 

 
Example: 

import re 
string = "Working with Data Science using Python" 
result = re.findall("ds",string) 
result 

 
If no matches found, an empty list will return. 
Output: 

[] 

 
5.9.2 The search() Function 

This function returns a match object if match found anywhere in the string. Only first 
occurrence of match will be returned, if there are more than one match found. The none 
will return if no match found. 
 
Example:  

import re 
string = "Working with Data Science using Python" 
result = re.search("wi",string) 



result 

 
It found the match value “wi”. 
 
Output: 

<re.Match object; span=(8, 10), match='wi'> 

 
Example:  

import re 
string = "Working with Data Science using Python" 
result = re.search("\s",string) 
result 

 
It found the match value “\s” i.e. space. 
Output: 

<re.Match object; span=(7, 8), match=' '> 

 
5.9.3 The split() Function 

This function returns a list of where the string has been split at each match found.  
 
Example:  

import re 
string = "Working with Data Science using Python" 
result = re.split("\s",string) 
result 

It found the match value “\s” i.e. space. 
Output: 

['Working', 'with', 'Data', 'Science', 'using', 'Python'] 

 
Example:  

import re 
string = "Working with Data Science using Python" 
result = re.split("\s",string,2) 
result 

It found the match value “\s” i.e. space. But here the string will split into first 2 
occurrence of found only. The remaining string will print as it is.  
Output: 

['Working', 'with', 'Data Science using Python'] 

 
5.9.4 The sub() Function 

This function replaces the string with the specified text at each match found. 



It will print same string, if not match found. 
 
Example:  

import re 
string = "Working with Data Science using Python" 
result = re.sub("\s", "-",string) 
result 

It found the match value “\s” i.e. space. Every “\s” (space) will replace with the “-” 
(dash).  
Output: 

'Working-with-Data-Science-using-Python' 

 
Example:  

import re 
string = "Working with Data Science using Python" 
result = re.sub("\s","-",string,2) 
result 

It found the match value “\s” i.e. space. But here “\s” (space) will replace with the “-” 
(dash) in first two occurrence of found only. The remaining string will print as it is. 
Output: 

'Working-with-Data Science using Python' 

 

5.10 SUMMARY  
The students will learn many things related to data pre-processing in this module and they 
will be able to perform the various data science related operation using Python. 

 Ability to do the data wrangling which includes data discovery structuring, 
cleaning, enriching, validating and publishing. 

 Ability to do the combining different datasets using concat, merge and join 
function with different arguments. 

 Ability to do the reshaping of dataset using melt, stack and unstack and pivot 
functions. 

 Ability to work with missing value, encoding categorical data into numerical 
value, splitting dataset etc. 

 Ability to perform the various functions related to string and regular expression. 
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QUESTIONS 

Short Answer: 

1. What is data wrangling? 
2. What is data cleaning? 
3. List tools for data wrangling. 
4. What is merging dataset? 
5. What is reshaping dataset? 

Long Answer: 

1. Explain steps for data wrangling process. 
2. Explain concat function with example. 
3. Explain merge operation with syntax and example. 
4. Explain reshaping dataset different functions. 
5. Explain string function with example. 
6. Explain regular expression with example. 

PRACTICALS  

1. Create and display a data frame. 
2. Create a data frame and find null values and remove it. 
3. Create a data frame and inert new column in data frame. 
4. Create a data frame and convert categorical data into numerical values. 
5. Create a data frame and split the column. 
6. Create data frames and combine using concat function. 
7. Create data frames and merge with different arguments. 
8. Create data frame and reshape using melt function. 
9. Perform string manipulation operations on string. 
10. Perform regular expression functions on string. 
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6.0 OBJECTIVES 
The main goal of this module is to help students learn, understand and practice the data 
science approaches, which include the study of latest data science tools with latest 
programming   . The main objectives of this module are data aggregation, group wise 
operation including data splitting, applying and combining, data transformation using lamda 
function, pivot table, cross tabulation using two-way and three-way cross table and data and 
time data type. 

6.1 INTRODUCTION  
Data science become a buzzword that everyone talks about the data science. Data science is 
an interdisciplinary field that combines different domain expertise, computer programming 
skills, mathematics and statistical knowledge to find or extract the meaningful or unknown 
patterns from unstructured and structure dataset. 

Data science is useful for extraction, preparation, analysis and visualization of various 
information. Various scientific methods can be applied to get insight in data.  

Data science is all about using data to solve problems. Data has become the fuel of industries. 
It is most demandable field of 21st century. Every industry require data to functioning, 
searching, marketing, growing, expanding their business.  

The application of areas of data science are health care, fraud detection, disease predicting, 
real time shipping routes, speech recognition, targeting advertising, gaming and many more. 

6.2 Data Aggregation 
Data aggregation is the process to gather the raw data and express in a summarised form for 
statistical analysis. Data may be collected from various sources and combine into a summary 
format for data analysis.  

A dataset contains large amount of data in a rows and columns. There are thousands or more 
data records are in a single dataset. Data aggregation will useful to access and process the 
large amount of data quickly. Aggregate data can be access quickly to gain insight instead of 
accessing all the data records. A single raw of aggregated data can represent this large 
number of data records over a given time period to calculate the statistics such as sum, 
minimum, maximum, average and count.  

 Sum : This function add all the specified data to get a total.   

 Min : This function displays the lowest value of each specified category. 

 Max : This function displays the highest value of each specified category. 

 Average : This function calculates the average value of the specific data. 

 Count : This function counts the total number of data entries for each category. 

Data aggregation provides more insight information based on related cluster of data. For 
example, a company want to know the sales performance of different district, they would 
aggregate the sales data based on the district. Data can aggregate by date also, if you want to 
know the trends over a period of months, quarters, years, etc.   



Example: Here, we will perform the aggregation operation on data frame. 

The below code will create and display data frame df. 

#importing pandas library 
import pandas as pd 
 
# Dataframe creation 
df = pd.DataFrame({ 
    "Rno":[1,2,3,4,5,6,7,8,9,10], 
    "Maths":[67,83,74,91,55,70,86,81,92,67], 
    "Physics":[56,67,72,84,89,79,90,89,92,82], 
    "Chemistry":[81,88,78,69,74,72,83,90,58,68], 
    "Biology":[90,83,86,75,68,79,67,71,91,89], 
    "English":[60,55,63,71,88,75,91,82,85,80]}) 
 
# Display dataframe 
df 

 
The above code will give the following output. 
 

 Rno Maths Physics Chemistry Biology English 

0 1 67 56 81 90 60 

1 2 83 67 88 83 55 

2 3 74 72 78 86 63 

3 4 91 84 69 75 71 

4 5 55 89 74 68 88 

5 6 70 79 72 79 75 

6 7 86 90 83 67 91 

7 8 81 89 90 71 82 

8 9 92 92 58 91 85 

9 10 67 82 68 89 8 

 

Now, we perform the aggregation using min, max and sum.  

The below code will find min and max value of different subject of data frame df. 

df.aggregate(["min","max"]) 



The above code will give the following output. 

 Rno Maths Physics Chemistry Biology English 

Min 1 55 56 58 67 55 

Max 10 92 92 90 91 91 

 

The below code will find min and max value and calculate average and sum value of 
different subject of data frame df. 

df.agg(["min","max","average","sum"]) 

The above code will give the following output. 

 Rno Maths Physics Chemistry Biology English 

min 1.0 55.0 56.0 58.0 67.0 55.0 

max 10.0 92.0 92.0 90.0 91.0 91.0 

average 5.5 76.6 80.0 76.1 79.9 75.0 

sum 55.0 766.0 800.0 761.0 799.0 750.0 

 

Now, we perform the different aggregation functions on different columns. 

The below code will find min and max value of “Maths” subject max and sum of 

“Physics” subject and min, median and std of “English” subject of data frame df. 

df.agg({"Maths":["min","max"], 
        "Physics":["max","sum"], 
        "English":["min","median","std"]}) 

 

The above code will give the following output. 

Here, NaN is display where the specific function is not applying for particular subject.  

 Maths Physics English 

max 92.0 92.0 NaN 

median NaN NaN 77.500000 

min 55.0 NaN 55.000000 

std NaN NaN 12.400717 

sum NaN 800.0 NaN 



 

Now, we will apply sum function on each column. 

The below code will calculate sum of each column of data frame df. 

df.sum() 

The above code will give the following output. 

Here, the sum of score of each subject will be display. 

Rno           55 
Maths        766 
Physics      800 
Chemistry    761 
Biology      799 
English      750 
dtype: int64 

 

Now, we will apply min function on each column. 

The below code will find min value of each column of data frame df. 

df.min() 

The above code will give the following output. 

Here, the min value of score of each subject will be display. 

Rno           1 
Maths        55 
Physics      56 
Chemistry    58 
Biology      67 
English      55 
dtype: int64 

 

Now, we will apply max function on each column. 

The below code will find max value of each column of data frame df. 

df.max() 

The above code will give the following output. 

Here, the max value of score of each subject will be display. 

 

 



 

Rno          10 
Maths        92 
Physics      92 
Chemistry    90 
Biology      91 
English      91 
dtype: int64 

 
Now, we will apply mean function on each column. 

The below code will calculate mean value of each column of data frame df. 

df.mean() 

The above code will give the following output. 

Here, the mean value of score of each subject will be display. 

Rno           5.5 
Maths        76.6 
Physics      80.0 
Chemistry    76.1 
Biology      79.9 
English      75.0 
dtype: float64 

 

Now, we will apply count function on each column. 

The below code will count the numbers of values in each column of data frame df. 

df.count() 

The above code will give the following output. 

Here, the total numbers of values of score of each subject will be display. 

Rno          10 
Maths        10 
Physics      10 
Chemistry    10 
Biology      10 
English      10 
dtype: int64 

 

Now we will apply std function on each column. 

The below code will calculate standard deviation of each column of data frame df. 



df.std() 

 

The above code will give the following output. 

Here, the standard deviation of score of each subject will be display. 

Rno           3.027650 
Maths        11.992590 
Physics      11.718931 
Chemistry     9.859570 
Biology       9.230986 
English      12.400717 
dtype: float64 

 

Now, we will apply describe function. 

The below code will calculate the basic statistics of each column of data frame df. 

df.describe() 

The above code will give the following output. 

 Rno Maths Physics Chemistry Biology English 

count 10.00000 10.00000 10.000000 10.00000 10.000000 10.000000 

mean 5.50000 76.60000 80.000000 76.10000 79.900000 75.000000 

std 3.02765 11.99259 11.718931 9.85957 9.230986 12.400717 

min 1.00000 55.00000 56.000000 58.00000 67.000000 55.000000 

25% 3.25000 67.75000 73.750000 69.75000 72.000000 65.000000 

50% 5.50000 77.50000 83.000000 76.00000 81.000000 77.500000 

75% 7.75000 85.25000 89.000000 82.50000 88.250000 84.250000 

max 10.00000 92.00000 92.000000 90.00000 91.000000 91.000000 

 
6.3 GROUP WISE OPERATION 
The groupby() function is used to perform the group wise operation on a large dataset. This is 
a versatile and easy to use function which help to get summary of large dataset. The summary 
is easy to explore the dataset and shows the relationship between variables. 

We can create a grouping of different categories and apply various functions to each 
category. This function is widely used in real data science projects which dealing with large 



amounts of data. It has ability to aggregate data efficiently. This function refers to a process 
of involving one or more of the following steps: 

 Splitting: It is a process in which we split the dataset into different groups based on 
some criteria. 

 Applying: It is a process in which we apply different functions to each group 
independently. To apply the function to each group, we perform some operations: 
 Aggregation: It is a process to compute a statistical summary of the group such 

as sum, mean, median, etc.  
 Transformation: It is a process to perform some group specific computations 

and return a like-indexed such as filling NA within group with a value derived 
from each group. 

 Filtration: It is a process to remove some groups based on some criteria such as 
filtering out dataset based on group wise sum or mean.  

 Combining: It is a process to combine different datasets after applying groupby 
function and results will store in a dataset. 

The syntax of groupby function is as follows: 

Syntax: 

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, 
group_keys=True, squeeze=False, **kwargs) 

Here,  

 by: mapping, function, label, str 
 axis: int, 0 or index and 1 or columns, default is 0, split along rows (0) or columns 

(1). 
 level: int, level name, default is None, If the axis is a MultiIndex, group by a 

particular level or levels. 
 as_index: boolean, default is True, for aggregated output, return object with group 

labels as the index. 
 sort: boolean, default is True, sort group keys. 
 group_keys: boolean, default is True, when calling apply, add group keys to index 

to identify pieces. 
 squeeze: boolean, default is False, reduce the dimensionality of the return type, if 

possible 

Example: Here, we will perform the groupby operation on data frame. 

The below code will create and display data frame df. 

# Importing pandas library 
import pandas as pd 
  
# Dataframe creation 
df = pd.DataFrame({ 



"Product":["Mango","Corn","Orange","Cabbage","Mango","Corn","Watermelon","App
le","Pumkin","Mango",], 
"Category":["Fruit","Vegetable","Fruit","Vegetable","Fruit","Vegetable","Fruit","Fruit
","Vegetable","Fruit"],   
"Qty":[12, 5, 10, 2, 10, 3, 5, 8, 2, 10], 
"Price":[350, 80, 320, 50, 200, 50, 280, 380, 60, 400]}) 
 
 
 
 
# Display dataframe 
df 

 

The above code will give the following output. 

 Product Category Qty Price 

0 Mango Fruit 12 350 

1 Corn Vegetable 5 80 

2 Orange Fruit 10 320 

3 Cabbage Vegetable 2 50 

4 Mango Fruit 10 200 

5 Corn Vegetable 3 50 

6 Watermelon Fruit 5 280 

7 Apple Fruit 8 380 

8 Pumkin Vegetable 2 60 

9 Mango Fruit 10 400 

 

Now, we will perform the groupby operation on “Category” columns.  

The below code will find sum of “Qty” and “Price” based on “Category” on data frame 

df. 

df.groupby("Category").sum() 

The above code will give the following output.  



Here, the total Qty of “Fruit” category is 55 and total Price of “Fruit” category is 1930, 

while total Qty of “Vegetable” category is 12 and total Price of “Vegetable” category is 

240. 

 Qty Price 

Category   

Fruit 55 1930 

Vegetable 12 240 

 

Now, we will perform the groupby operation on “Product” columns.  

The below code will find sum of “Qty” and “Price” based on different “Product” on data 

frame df. 

df.groupby("Product").sum() 

The above code will give the following output.  

 Qty Price 

Product   

Apple 8 380 

Cabbage 2 50 

Corn 8 130 

Mango 32 950 

Orange 10 320 

Pumkin 2 60 

Watermelon 5 280 

Now, we will perform the groupby operation on “Category” columns.  

The below code will find mean of “Price” based on “Category” on data frame df. 

df.groupby("Category")["Price"].mean() 

The above code will give the following output.  

Category 
Fruit        321.666667 
Vegetable     60.000000 
Name: Price, dtype: float64 

 



The below code will find mean of “Qty” based on “Category” on data frame df. 

df.groupby("Category")["Qty"].mean() 

The above code will give the following output.  

Category 
Fruit        9.166667 
Vegetable    3.000000 
Name: Qty, dtype: float64 

 

Now, we will perform the groupby operation on “Product” columns.  

The below code will find mean of “Price” based on “Product” on data frame df. 

df.groupby("Product")['Price'].mean() 

The above code will give the following output.  

Product 
Apple         380.000000 
Cabbage        50.000000 
Corn           65.000000 
Mango         316.666667 
Orange        320.000000 
Pumkin         60.000000 
Watermelon    280.000000 
Name: Price, dtype: float64 

 

Now, we will perform the groupby operation on “Category” columns.  

The below code will find median of “Price” based on “Category” on data frame df. 

 

df.groupby("Category")["Price"].median() 

The above code will give the following output.  

Category 
Fruit        335 
Vegetable     55 
Name: Price, dtype: int64 

 

The below code will find standard deviation of “Price” based on “Category” on data 

frame df. 

df.groupby("Category")["Price"].std() 



The above code will give the following output.  

Category 
Fruit        73.325757 
Vegetable    14.142136 
Name: Price, dtype: float64 

 
6.4 Transformation 
Transformation is a process in which we perform some group-specific computations and 
return a like-indexed. Transformation perform on a group or a column which returns an 
object that is indexed the same size of that is being grouped. Thus, the transform should 
return a result that is the same size as that of a group chunk. 

Syntax:  

DataFrame.transform(func, axis=0, *args, **kwargs) 

Here,  

 func: this is the function to use for data transformation. 
 axis: the axis in which the transformation will perform, {0 or „index‟, 1 or 

„columns‟}, default is 0. 
 *args: positional arguments to pass in func. 
 **kwargs: keyword arguments to pass in func. 

 

Example: Here, we will perform some group specific operation and return a like-
indexed.  

The below code will create and display data frame df. 

#importing pandas library 
import pandas as pd 
   
# Creating the DataFrame 
df = pd.DataFrame({ 
 "A":[8, 7, 15, 12, 15],  
   "B":[None, 22, 32, 9, 7],  
   "C":[10, 6, None, 8, 14]})  
 
# Display dataframe 
df 

 
The above code will give the following output. 

 

 A B C 



0 8 NaN 10.0 

1 7 22.0 6.0 

2 15 32.0 NaN 

3 12 9.0 8.0 

4 15 7.0 14.0 

 
Now, we will perform the transform operation using lambda.  

 

The below code will multiply by 5 to each value of all the columns A, B and C of data 
frame df. 

 

result = df.transform(func = lambda x : x * 5) 
result 

 
The above code will give the following output. 

 A B C 

0 40 NaN 50.0 

1 35 110.0 30.0 

2 75 160.0 NaN 

3 60 45.0 40.0 

4 75 35.0 70.0 

 
The below code will calculate the square root of value of all the columns A, B and C of 
data frame df. 

 

result = df.transform(func = ["sqrt"]) 
result 

 
 

 

 

 



 

The above code will give the following output. 

 A B C 

 sqrt sqrt sqrt 

0 2.828427 NaN 3.162278 

1 2.645751 4.690416 2.449490 

2 3.872983 5.656854 NaN 

3 3.464102 3.000000 2.828427 

4 3.872983 2.645751 3.741657 

 

The below code will calculate the exponential of value of all the columns A, B and C of 
data frame df. 

result = df.transform(func = ["exp"]) 
result 

The above code will give the following output. 

 A B C 

 exp exp exp 

0 2.980958e+03 NaN 2.202647e+04 

1 1.096633e+03 3.584913e+09 4.034288e+02 

2 3.269017e+06 7.896296e+13 NaN 

3 1.627548e+05 8.103084e+03 2.980958e+03 

4 3.269017e+06 1.096633e+03 1.202604e+06 

 

The below code will calculate both square root and exponential together of value of all 
the columns A, B and C of data frame df. 

result = df.transform(func = ["sqrt","exp"]) 

result 

The above code will give the following output. 

 A B C 

 sqrt exp sqrt exp sqrt exp 



0 2.828427 2.980958e+03 NaN NaN 3.162278 2.202647e+04 

1 2.645751 1.096633e+03 4.690416 3.584913e+09 2.449490 4.034288e+02 

2 3.872983 3.269017e+06 5.656854 7.896296e+13 NaN NaN 

3 3.464102 1.627548e+05 3.000000 8.103084e+03 2.828427 2.980958e+03 

4 3.872983 3.269017e+06 2.645751 1.096633e+03 3.741657 1.202604e+06 

 
The below code will create and display data frame df. 

#importing pandas library 
import pandas as pd 
 
# Creating the DataFrame 
df = pd.DataFrame({ 
"Team":["MI","CSK","RR","MI","KKR","KKR","MI","CSK","KKR", 
"RR"], 
"Score":[210,150,215,180,185,205,230,190,160,185]}) 
 
# Display dataframe 
df 

 

The above code will give the following output. 

 Team Score 
0 MI 210 
1 CSK 150 
2 RR 215 
3 MI 180 
4 KKR 185 
5 KKR 205 
6 MI 230 
7 CSK 190 
8 KKR 160 
9 RR 185 

 

The below code will perform the transformation operation using groupby function.  

Here, groupby function will apply on “Team” and calculate the “sum” of “Score” using 

transform function. 

df.groupby("Team")["Score"].transform("sum") 

The above code will give the following output. 

Here, the sum of “Score” of each “Team” will be display. 



0    620 
1    340 
2    400 
3    620 
4    550 
5    550 
6    620 
7    340 
8    550 
9    400 
Name: Score, dtype: int64 

 

6.5 PIVOT TABLE 
Pivot table is a statistical table which summarizes a substantial table like a big dataset. The 
summary in a pivot tables may include sum, min, max, mean, median or other statistical 
terms. The pivot() function provides general purpose pivoting with various data type such as 
string, numeric, etc. The pivot_table() function is used to create pivot table with aggregation 
of numeric data using data frame of pandas library of Python. The syntax of this function is 
as follow: 

Syntax:  

DataFrame.pivot(data, index=None, columns=None, values=None, aggfunc) 

Here,  

 data: dataframe object  
 index: a column which has the same length as data. Keys to group by on the pivot 

table index. 
 columns: a column which has the same length as data. Keys to group by on the pivot 

table column. 
 values: column or list of columns to aggregate  
 aggfunc: function to use for aggregation 

 

The below example will create a pivot table using pivot_table() function of pandas 
library of Python. 

Example :  

The below code will create and display data frame df. 

# Importing pandas library 
import pandas as pd 
  
# Dataframe creation 
df = pd.DataFrame({ 



"Product":["Mango","Corn","Orange","Cabbage","Mango","Corn","Watermelon","App
le","Pumkin","Mango"], 
"Category":["Fruit","Vegetable","Fruit","Vegetable","Fruit","Vegetable","Fruit","Fruit
","Vegetable","Fruit"], 
"Qty":[12, 5, 10, 2, 10, 3, 5, 8, 2, 10], 
"Price":[350, 80, 320, 50, 200, 50, 280, 380, 60, 400]}) 
 
 
# Display dataframe 
df 

 

The above code will give the following output. 

 Product Category Qty Price 

0 Mango Fruit 12 350 

1 Corn Vegetable 5 80 

2 Orange Fruit 10 320 

3 Cabbage Vegetable 2 50 

4 Mango Fruit 10 200 

5 Corn Vegetable 3 50 

6 Watermelon Fruit 5 280 

7 Apple Fruit 8 380 

8 Pumkin Vegetable 2 60 

9 Mango Fruit 10 400 

 

Now, we will perform some examples of pivot table. 

Example: To create a pivot table of total sales of each product. 

# Pivot table of total sales of each product 
tot_sales = df.pivot_table(index=["Product"], values=["Price"],aggfunc="sum") 
 
# Display pivot table of total sales 
print(tot_sales) 

 



Here, we set the index as a “Product” and “sum” as an aggregate function to calculate the 
total sales of each product. The sum function will do the summation of each products. 
The above code will give the following output. 

            Price 
Product           
Apple         380 
Cabbage        50 
Corn          130 
Mango         950 
Orange        320 
Pumkin         60 
Watermelon    280 

 

Example: To create a pivot table of total sales of each category. 

# Pivot table of total sales of each category 
tot_sales = df.pivot_table(index=["Category"], values=["Price"], aggfunc="sum") 
 
 
# Display pivot table of total sales 
print(tot_sales) 

 

Here, we set the index as a “Category” and “sum” as an aggregate function to calculate 

the total sales of each category.  The above code will give the following output. 

           Price 
Category         
Fruit       1930 
Vegetable    240 

 

Example: To create a pivot table of total sales of each product. 

# Pivot table of total sales of both product and category 
tot_sales = df.pivot_table(index=["Category","Product"], values=["Price"], 
aggfunc="sum") 
 
# Display pivot table of total sales 
print(tot_sales) 

 

Here, we set the index as a both “Category” and “Product” and “sum” as an aggregate 

function to calculate the total sales of each product. The above code will give the 
following output. 



                      Price 
Category  Product           
Fruit     Apple         380 
          Mango         950 
          Orange        320 
          Watermelon    280 
Vegetable Cabbage        50 
          Corn          130 
          Pumkin         60 

 

Example: To create a pivot table to find the minimum, maximum, mean and median of 
price of each category wise. 

# Pivot table of min, max, mean and media of sales 
tot_sales = df.pivot_table(index=["Category"], values=["Price"], 
aggfunc={"min","max","mean","median"}) 
 
# Display pivot table of total sales 
print(tot_sales) 

 

Here, we set the index as a “Category” and “min”, “max”, “mean” and “median” as an 

aggregate function to calculate the minimum, maximum, mean and median of price of 
each category wise. The above code will give the following output. 

 

           Price                           
             max        mean median    min 
Category                                   
Fruit      400.0  321.666667  335.0  200.0 
Vegetable   80.0   60.000000   55.0   50.0 

 

Example: To create a pivot table of total product count of each category. 

# Pivot table of minimum, maximum and average sales 
tot_sales = df.pivot_table(index=["Category", "Product"], 
values=["Price"],aggfunc=["count"]) 
 
# Display pivot table of total sales 
print(tot_sales) 

 



Here, we set the index as a both “Category” and “Product” and “count” as an aggregate 

function to count total product of each category. The above code will give the following 
output. 

                     count 
                     Price 
Category  Product          
Fruit     Apple          1 
          Mango          3 
          Orange         1 
          Watermelon     1 
Vegetable Cabbage        1 
          Corn           2 
          Pumkin         1 

 
6.6 CROSS TABULATIONS 
The cross-tabulation method is used to calculate the simple cross-tabulation of two or more 
factors. The pandas provide crosstab() function to build a cross-tabulation table which shows 
the frequency with which certain groups of data appear. The syntax of crosstab() function in 
pandas is as follow: 

Syntax:  

pd.crosstab(index, columns, values=None, rownames=None, colnames=None, 
aggfunc=None, margins=False, margins_name=’All’, normalize=False, 

dropna=True) 

Here,  

 index: array-like, values to group by in the rows. 
 columns: array-like, values to group by in the columns. 
 values: array-like, optional, array of values to aggregate according to the factors. 
 rownames: sequence, must match number of row arrays passed, default is None 
 colnames: sequence, must match number of column arrays passed if passed, default 

is None 
 aggfuncs: function, optional, if no values array is passed, its computers a frequency 

table. 
 margins: boolean, add row / column margins (i.e. subtotals), default is False. 
 margins_name: string, name of the row / column that will contain the subtotals if 

margins is True, default is “All”. 
 normalize: boolean, {„all‟, ‟index‟, ‟columns‟}, or {0,1}, normalize by dividing all 

values by the sum of values, default is False. 
 dropna: boolean, do not include columns whose all entries are NaN, default is True. 

The below example will create a cross-table using crosstab() function of pandas library 
of Python. 



Example :  

The below code will create and display data frame df. 

# Importing pandas library 
import pandas as pd 
  
# Dataframe creation 
df = pd.DataFrame({ 
"Name":["Rahul","Jyoti","Rupal","Rahul","Jyoti","Rupal", 
"Rahul","Jyoti","Rupal","Rahul","Jyoti","Rupal","Rahul", 
"Jyoti","Rupal","Rahul","Jyoti","Rupal"], 
"Examination":["SEM-I","SEM-I","SEM-I","SEM-I","SEM-I", 
"SEM-I","SEM-I","SEM-I","SEM-I","SEM-II","SEM-II", 
"SEM-II","SEM-II","SEM-II","SEM-II","SEM-II","SEM-II", 
"SEM-II"], 
"Subject":["Physics","Physics","Physics","Chemistry", 
"Chemistry","Chemistry","Biology","Biology","Biology", 
"Physics","Physics","Physics","Chemistry","Chemistry", 
"Chemistry","Biology","Biology","Biology"], 
"Result":["PASS","PASS","FAIL","PASS","FAIL","PASS","FAIL", 
"PASS","FAIL","PASS","PASS","PASS","FAIL","PASS","PASS", 
"PASS","PASS","FAIL"]}) 
 
# Display dataframe 
df 

 

The above code will give the following output. 

 

 Name Examination Subject Result 

0 Rahul SEM-I Physics PASS 

1 Jyoti SEM-I Physics PASS 

2 Rupal SEM-I Physics FAIL 

3 Rahul SEM-I Chemistry PASS 

4 Jyoti SEM-I Chemistry FAIL 

5 Rupal SEM-I Chemistry PASS 

6 Rahul SEM-I Biology FAIL 



7 Jyoti SEM-I Biology PASS 

8 Rupal SEM-I Biology FAIL 

9 Rahul SEM-II Physics PASS 

10 Jyoti SEM-II Physics PASS 

11 Rupal SEM-II Physics PASS 

12 Rahul SEM-II Chemistry FAIL 

13 Jyoti SEM-II Chemistry PASS 

14 Rupal SEM-II Chemistry PASS 

15 Rahul SEM-II Biology PASS 

16 Jyoti SEM-II Biology PASS 

17 Rupal SEM-II Biology FAIL 

 

Two-way cross table:  

There are two columns is used to create a cross table is called two-way cross table. 

Here, we will create a cross table of two columns “Subject” and “Result” as follow:  

# Two-way cross table creation 

pd.crosstab(df.Subject, df.Result, margins=True) 

Here, we set margin=True to display the row wise sum and column wise sum of the cross 
table. The above code will give the following output. 

Result FAIL PASS All 

Subject 
   

Biology 3 3 6 

Chemistry 2 4 6 

Physics 1 5 6 

All 6 12 18 

 

Three-way cross table:  

There are three columns is used to create a cross table is called three-way cross table. 



 

Here, we will create a cross table of three columns “Subject”, “Examination” and 

“Result” as follow:  

# Three-way cross table creation 

pd.crosstab([df.Subject, df.Examination], df.Result, margins=True) 

Here, we set margin=True to display the row wise sum and column wise sum of the cross 
table. The above code will give the following output. 

 Result FAIL PASS All 

Subject Examination    

Biology 
SEM-I 2 1 3 

SEM-II 1 2 3 

Chemistry 
SEM-I 1 2 3 

SEM-II 1 2 3 

Physics 
SEM-I 1 2 3 

SEM-II 0 3 3 

All  6 12 18 

 
6.7 DATE AND TIME DATA TYPE 

Python does not have date and time data types, but it has a module named “datetime” can 

be imported to deal with the date and time. This is inbuilt module available in the 
Python. This module consists different classes to work with date and time. These classes 
provide different functions to work with dates, times and time intervals. 

There are main six classes in datetime module: 

Data Type Description 

Date It is a date type object. It manipulates only date (i.e. day, month and year). 

Time 
It is a time object class.  It manipulates only time of the any specific day 
(i.e. hour, minute, second, microsecond). 

Datetime 
It manipulates the combination of both time and date (i.e. day, month, year, 
hour, second, microsecond). 

timedelta 
It manipulates the duration expressing the different between two dates, 
times or datetime values in milliseconds. 

Tzinfo It is an abstract base class which provides time zone information. 



timezone 
It is a class that implements tzinfo abstract base class as a fixed offset 
from the UTC. 

 
There are different format codes is used to formatting the data and time.  

The format codes are as follows: 

Directive Description Example 

%a Day of Week, short version Fri 

%A Day of Week, full version Friday 

%w 
Day of Week as a number from 0 to 6,  

Here 0 is Sunday 
4 

%d Day of Month from 01 to 31 25 

%b Name of Month, short version Mar 

%B Name of Month, full version March 

%m Month as a number from 01 to 12 11 

%y Year, short version (in two digit) 21 

%Y Year, full version (in four digit) 2021 

%H Hour from 00 to 23 (in 24 hr format) 16 

%I Hour from 00 to 12 (in 12 hr format) 07 

%p AM or PM AM 

%M Minute from 00 to 59 35 

%S Second from 00 to 59 45 

%f Microsecond from 000000 to 999999 234567 

%z UTC offset +0100 

%Z Timezone CST 

%j Day number of year from 001 to 365 325 

%U 
Week number of year, Sunday as the first day of week, 
from 00 to 53 

40 

%W 
Week number of year, Monday as the first day of week, 
from 00 to 53 

40 

%c Local version of date and time 
Tue Mar 30 
13:25:30 2021 

%x Local version of date (MM/DD/YY) 11/24/2021 

%X Local version of time (HH:MM:SS) 18:25:40 



 
To get more insight and work with datetime modules, let‟s take few examples. 

Example: To get current data and time. 

# To get the current date and time 
import datetime as dt 
d = dt.datetime.now() 
print(d) 

 
The above code will give the following output. 

2021-05-15 00:53:08.925167 

Here, the now() function is used to display the current local date and time.  

Example: To get the current date. 

# To get the current date only 
import datetime as dt 
d = dt.date.today() 
print(d) 

 
The above code will give the following output. 

2021-05-15 

Here, the today() function is used to get the current local date. 

Example: To get the todays date. 

# To get the today‟s date, month and year separately 
import datetime as dt 
today = dt.date.today() 
print(today) 
print("Day :",today.day) 
print("Month :",today.month) 
print("Year :",today.year) 

 
The above code will give the following output. 

2021-05-15 
Day : 15 
Month : 5 
Year : 2021 

 
Here, the today() function is used to get the current local date and display day, month and 
year separately. 



Example: To represent a date using date object. 

# To represent a date using date object 
import datetime as dt 
d = dt.date(2021, 1, 26) 
print(d) 

The above code will give the following output. 

2021-01-26 

Here, the date is passed as an argument. 

Example: To represent a date using timestamp. 

# To get date from a timestamp 
import datetime as dt 
ts = dt.date.fromtimestamp(987654321) 
print(ts) 

 
The above code will give the following output. 

2001-04-19 

Here, the fromtimestamp() function is used converts seconds into equivalent date. 

Example: To represent a time using time object. 

# To represent a time using time object 
import datetime as dt 
 
# time(hour=0, minute=0, second=0) 
t = dt.time() 
print("Time :",t) 
 
# time(hour, minute, second) 
t = dt.time(10, 40, 55) 
print("Time :",t) 
 
# time(hour, minute, second) 
t = dt.time(hour=10, minute=40, second=55) 
print("Time :",t) 
 
# time(hour, minute, second, microsecond) 
t = dt.time(10, 40, 55, 123456) 
print("Time :",t) 
 
# time(hour, minute, second, microsecond) 
t = dt.time(10, 40, 55, 123456) 



print("Hour :",t.hour) 
print("Minute :",t.minute) 
print("Second :",t.second) 
print("Microsecond :",t.microsecond) 

The above code will give the following output. 

Time : 00:00:00 
Time : 10:40:55 
Time : 10:40:55 
Time : 10:40:55.123456 
Hour : 10 
Minute : 40 
Second : 55 
Microsecond : 123456 

 
Here, the time() function with different arguments is used to get the time in different 
formats. 

Example: To represent a datetime object. 

# To represent a datetime using datetime object 
import datetime as dt 
 
# datetime(year, month, day) 
dtformat = dt.datetime(2021, 5, 15) 
print(dtformat) 
 
# datetime(year,month,day,hour,minute,second,microsecond) 
dtformat = dt.datetime(2021, 5, 15, 16, 35, 25, 234561) 
print(dtformat) 

 
The above code will give the following output. 

2021-05-15 00:00:00 
2021-05-15 16:35:25.234561 

 
Here, the datetime() function is used to display the dates in different formats. 

Example: To represent a datetime object using different format. 

# To represent a datetime using datetime object 
import datetime as dt 
 
dtformat = dt.datetime(2021, 5, 15, 16, 35, 25, 234561) 
print("Year : ",dtformat.year) 
print("Month : ",dtformat.month) 



print("Day : ",dtformat.day) 
print("Hour : ",dtformat.hour) 
print("Minute : ",dtformat.minute) 
print("Timestamp : ",dtformat.timestamp()) 

 
The above code will give the following output. 

 

Year :  2021 
Month :  5 
Day :  15 
Hour :  16 
Minute :  35 
Timestamp :  1621076725.234561 

 
Here, the datetime() function is used to display the dates separately in year, month, day, 
hours, minutes, seconds etc. 

Example: To find the difference between to dates and times. 

# Different between two dates and times 
import datetime as dt 
 
# date(year, month, day) 
t1 = dt.date(year=2021, month=5, day=15) 
t2 = dt.date(year=2020, month=7, day=25) 
t3 = t1 - t2 
print("Date Difference :",t3) 
print("Type of t3 :",type(t3)) 
 
# date(year, month, day, hour, minute, second) 
t1 = dt.datetime(year=2020, month=1, day=15, hour=8, minute=25, second=45) 
t2 = dt.datetime(year=2021, month=4, day=25, hour=10, minute=30, second=50) 
t3 = t1 - t2 
print("Date Difference :",t3) 
print("Type of t3 :",type(t3)) 

 
The above code will give the following output. 

Date Difference : 294 days, 0:00:00 
Type of t3 : <class 'datetime.timedelta'> 
Date Difference : -467 days, 21:54:55 
Type of t3 : <class 'datetime.timedelta'> 

 



Here, the datetime() function is used to display the dates and perform the subtraction 
operation between two different dates. 

Example: To use of timedelta object. 

# Different between two timedelta objects 
import datetime as dt 
 
t1 = dt.timedelta(weeks=6, days=5, hours=9, minutes=45, seconds=10) 
t2 = dt.timedelta(weeks=4, days=3, hours=5, minutes=25, seconds=35) 
t3 = t1 - t2 
print("Time Delta Difference : ",t3) 
 
t1 = dt.timedelta(weeks=3, hours=10, minutes=45) 
t2 = dt.timedelta(days=4, minutes=15, seconds=35) 
t3 = t1 - t2 
print("Time Delta Difference : ",t3) 

 
The above code will give the following output. 

Time Delta Difference :  16 days, 4:19:35 
Time Delta Difference :  17 days, 10:29:25 

 
Here, the timedelta() function is used to display the dates and perform the subtraction 
operation between two different dates. 

Example: To represent the time in total seconds. 

# Time duration in seconds 
import datetime as dt 
t = dt.timedelta(hours=9, minutes=35, seconds=15) 
print("Time in Second :",t.total_seconds()) 

 
The above code will give the following output. 

Time in Second : 34515.0 

Here, the total_seconds() function is used to convert given times into second format. 

Example: To use strftime() function for formatting. 

# Use of strftime() function for date formatting 
import datetime as dt 
 
# current date and time 
now = dt.datetime.now() 
print("Current Date and Time :",now) 
 



# time in HH:MM:SS format 
f1 = now.strftime("%H:%M:%S") 
print("Time format is :",f1) 
 
# date and time format DD/MM/YY, HH:MM:SS format 
f2 = now.strftime("%d/%m/%Y, %H:%M:%S") 
print("Date :",f2) 
 
# Date and time format MM/DD/YY, HH:MM:SS format 
f3 = now.strftime("%m/%d/%Y, %H:%M:%S") 
print("Date :",f3) 

The above code will give the following output. 

Current Date and Time : 2021-05-15 17:16:52.794301 
Time format is : 17:16:52 
Date : 15/05/2021, 17:16:52 
Date : 05/15/2021, 17:16:52 

 
Here, the strftime() function is used to display the dates in different format. 

Example: To use strptime() function for formatting. 

# Use of strptime() function for date formatting 
import datetime as dt 
 
# date in string format 
dt_string = "15 May, 2021" 
print("Date in string :",dt_string) 
 
# date in object format 
dt_object = dt.datetime.strptime(dt_string, "%d %B, %Y") 
print("Date in object :",dt_object) 

 
The above code will give the following output. 

Date in string : 15 May, 2021 
Date in object : 2021-05-15 00:00:00 

 
Here, the strptime() function is used to string format date into object format date.  

Example: To use different timezone.  

# Use of time zone 
import datetime as dt 
import pytz 
 



# Local time zone 
local = dt.datetime.now() 
print("Local Time Zone:",local.strftime("%m/%d/%y, %H:%M:%S")) 
 
# London time zone 
tz_London = pytz.timezone('Europe/London') 
dt_London = dt.datetime.now(tz_London) 
print("London Time Zone:",dt_London.strftime("%m/%d/%y, %H:%M:%S")) 
 
# Newyork time zone 
tz_NY = pytz.timezone('America/New_York') 
dt_NY = dt.datetime.now(tz_NY) 
print("New York Time Zone:",dt_NY.strftime("%m/%d/%y, %H:%M:%S")) 

The above code will give the following output. 

Local Time Zone: 05/15/21, 17:35:15 
London Time Zone: 05/15/21, 13:05:15 
New York Time Zone: 05/15/21, 08:05:15 

 
Here, the pytz is used to set different timezone and strftime() function is used to display 
the dates in different format. 

6.8 SUMMARY  
The students will learn many things related to data aggregation and group wise 
operations in this module and they will be able to perform the various data science 
related operation using Python. 

 Ability to perform the data aggregation using various functions such as min, max, 
sum, average, count etc. 

 Ability to perform group wise operation on specific group such as splitting, 
applying and combining to calculate the mean, median, standard deviation group 
wise. 

 Ability to do the statistical summary table using pivoting. 
 Ability to work with cross tabulation using both two-way and three-way cross 

table. 
 Ability to perform various operation on date and time data types. 
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QUESTIONS 

Short Answer: 

6. What is data aggregation? 
7. What is data splitting? 
8. What is transformation? 
9. What is pivot table? 
10. What is cross tabulation? 

Long Answer: 

7. Explain data aggregation with different functions. 
8. Explain groupby function with example. 
9. Explain transform function with syntax and example. 
10. Explain pivot table with example. 
11. Explain cross tabulation with example. 
12. Explain date and time data type with different format code. 

 

PRACTICALS  

1. Create a data frame and perform aggregation functions. 
2. Create data frames and perform groupby function with different arguments. 
3. Create data frames and perform transform function. 
4. Create data frame and perform pivot table with different arguments. 
5. Create data frame and prepare two-way and three-way cross table. 
6. Perform various operation using date and time data types. 
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7.0 OBJECTIVES 
The main goal of this module is to help students learn, understand and practice the data 
science approaches, which include the study of latest data science tools with latest 
programming languages. The main objectives of this module are data modeling which 
includes the basics of generative modeling and predictive modeling techniques and data 
visualization which include different types of charts and plots like histogram, scatter plot, 
time series plot etc. 

7.1 INTRODUCTION  
Data science become a buzzword that everyone talks about the data science. Data science is 
an interdisciplinary field that combines different domain expertise, computer programming 
skills, mathematics and statistical knowledge to find or extract the meaningful or unknown 
patterns from unstructured and structure dataset. 

Data science is useful for extraction, preparation, analysis and visualization of various 
information. Various scientific methods can be applied to get insight in data.  

Data science is all about using data to solve problems. Data has become the fuel of industries. 
It is most demandable field of 21st century. Every industry require data to functioning, 
searching, marketing, growing, expanding their business.  

The application of areas of data science are health care, fraud detection, disease predicting, 
real time shipping routes, speech recognition, targeting advertising, gaming and many more. 

7.2 INTRODUCTION TO GENERATIVE MODELING 
Generative models are the family of machine learning models that are used to describe how 
data is generated. There are mainly two different types of problems to work with machine 
learning or deep learning algorithms such as supervised learning and unsupervised learning. 

In supervised learning problem, we have two variables such as independent variables (x) and 
the target variable (y). The examples of supervised learning are classification, regression, 
object detection etc. 

In unsupervised learning problem, we have only independent variables (x). there are no target 
variable or label. It aims is to find some underlying patterns from the dataset. The examples 
of unsupervised learning are clustering, dimensionality reduction etc. 

The generative model is an unsupervised learning problem in machine learning. It 
automatically discovers and learning the rules, regularities or patterns from the large input 
training dataset. This model learns to create a data that is look like as given. A generative 
model can be broadly defined as follows: 

A generative model describes how a dataset is generated, in terms of a probabilistic model. 
By sampling from this model, we are able to generate new data. 

Generative model can generate new data instances. If we have a dataset containing images of 
any animal and we may develop a model which can generate a new image of same animal 
that is never existing but still it looks like as real animal. This model has learned the general 



rules that govern the appearance of a specific animal. A generative modelling is used to solve 
this kind of problems. A generative model process are as follows: 

We require a dataset which consists many instants of the entity which we want to generate. 
This dataset is known as the training data and each data points is called as an observation. 
The following diagram represent a horse animal dataset.  

 

 

Generative Model Process (Source: https://www.oreilly.com) 

The existing dataset of horse images is used as a training dataset. Based on the training given 
to the existing dataset it built a generative model to create new images which look like as a 
real image. 

7.3 INTRODUCTION TO PREDICTIVE MODELING 
Predictive modeling is a mathematical approach to build models based on existing dataset, 
which will help to finding the future value or trend of a variable. The variety of statistical 
techniques including data mining and machine learning are used to estimate or predict the 
future outcomes.  

The predictive modelling is used for every area such as  

 Weather forecasting 
 Price forecasting 
 Demand forecasting 
 Sales forecasting 
 Customer targeting 
 Financial modeling 
 Risk assessment 
 Market analysis  

7.3.1 Types of Models 

There are different predictive analytics models are developed for specific applications as 
follows: 

https://www.oreilly.com/


 Classification Model 
 Clustering Model 
 Forecasting Model 
 Time Series Model 
 Outlier Model 
 

 Classification Model 

This is a simplest and most commonly used predictive analytics model. It works on 
categorical information based on historical data.  

This model is used or apply in many industrial applications because it can easily 
retrain with new data as per the needs.  

 Clustering Model 

This model is use to take the data and divide it into different nested smart groups 
based on some common attributes. It helps to divide or grouping things or data 
with shared characteristic or behaviors and take strategic decisions for each group. 
For example, the customers can be divided based on common attributes like 
purchasing methods, purchasing power, etc. for targeted marketing campaign to the 
customers.  

 Forecast Model 

This is a very popular and most widely use model. It works with the metric value 
prediction, by estimating the value of new data based on learnings from historical 
data. It is also used to generate the numerical values and update where none or 
missing value found. This model can be applied wherever historical numerical data 
is available. It considers multiple input parameters.  

This model is used in many different business and industries. For example, the 
company‟s customer care department can predict how many supports calls they 

will receive per day.  

 Time Series Model 

This model is focusses on data where time is an input parameter. This model is 
applied by using different data points which is taken from the previous year‟s data 

to develop a numerical metric that will used to predict the trends within a specified 
period of time. 

This model is used in many industries which want to see how a particular variable 
change over a time period. It also takes care about extraneous factors that might be 
affect the variable such as seasons or seasonal variable. For example, the shopping 
mall owners want to know the how many customers may visit the mall in week or 
month.  

 Outliers Model 



This model is work with anomalous data entries in a dataset. It works by finding 
unusual data, either in isolation or in relation with different categories and 
numbers. It is more useful in industries were identifying anomalies can save 
organization corers of rupees such as finance and retail. It is more effective in fraud 
detection because it can find the anomalies. Since an incidence of fraud is a 
deviation from the norm, this model is more likely to predict it before it occurs. For 
example, when identifying a fraud transaction, this model can assess the amount of 
money lost, purchase history, time, location etc.  

7.3.2 Predictive Algorithms 

The predictive analytics algorithms can be separated into two things: machine 
learning and deep learning. These both are subsets of artificial intelligence (AI).   

Machine Learning: It deals structural data such as table or spreadsheets. It has both 
linear and non-linear algorithms. Linear algorithms are quickly train, while non-linear 
are better optimized for the problems they are to face. 

 

Deep Learning: It is a subset of machine learning.  It deals with unstructured data 
such as images, social media posts, text, audio and videos.  

There are several algorithms can be used for machine learning predictive modelling. 
The most common algorithms are: 

 Random Forest 
 Generalized Linear Model (GLM) for Two Values 
 Gradient Booster Model (GBM) 
 K-Means 
 Prophet  

7.4  CHARTS  
Charts is the representation of data in a graphical format. It helps to summarizing and 
presenting a large amount of data in a simple and easy to understandable formats. By placing 
the data in a visual context, we can easily detect the patterns, trends and correlations among 
them. 

Python provides various easy to use multiple graphics libraries for data visualization with 
different features. These libraries are work with both small and large datasets.  

Python has multiple graphics libraries with different features. Some of the most popular and 
commonly used Python data visualization libraries are : 

 Matplotlib 

 Pandas 

 Seaborn 

 ggplot 

 Plotly 



Matplotlib is a most popular, amazing and multi-platform data visualization library available 
in Python. Matplotlib consists a wide variety of plots like histogram, scatter plot, line or time 
series plot, bar chart etc.  

7.4.1 Histogram 

Histogram is a graphical representation of the distribution of numerical data. It contains a 
rectangular area to display the statistical information which is proportional to the frequency 
of a variable. It is an estimate of probability distribution of a continuous variable.  

In a histogram, the data are binned and the count for each bin is represent. The number of 
bins is selected so that it is comparable to the typical number of samples in a bin. The bins are 
specified as consecutive and non-overlapping intervals of a variable. The numbers of bin can 
be customized also.  

There are three basic steps to construct a histogram: 

 Bin the range of values 
 Distribute the range of values in a series of intervals 
 Count the numbers of value into each interval 

The hist() function is used to plot a histogram. It computes and draw the histogram 
of x values. There is some parameter to construct the histogram are as follows: 

 bins: numbers of bin in the plot, optional 

 range:  lower and upper range of the bins. 
 density: density or count to populate the plot 

 histtype: types of histogram plot such as bar, step and stepfilled, default is bar 
 align: control to plot the histogram such as left, mid and right 
 rwidth: relative width of a bar as a fraction of bin width 

 color:   it is a color spec or sequence of color specs  
 orientation: horizontal or vertical representation, default is vertical 

Example: Here we take an example of age of peoples. 

The x-axis represents age group or bins and y-axis represents age. 

# Importing library 
import matplotlib.pyplot as plt 
 
# Data values 
age = [22, 55, 62, 45, 21, 22, 4, 12, 14, 64, 58, 68, 95, 85, 55, 38, 18, 37, 65, 59, 11, 
15, 80, 75, 65] 
bins = [0,10,20,30,40,50,60,70,80,90,100] 
 
 
# Plotting the histogram with title and label 
plt.hist(age, bins) 
plt.xlabel("Age Group") 



plt.ylabel("No. of People") 
plt.title("Histogram") 
 
# Show plot 
plt.show() 

 
The above code will plot histogram as follow: 

 

 

Here, the age is divided into different age group.  

We can also set the type and color of histogram and using histtype and color as an 
argument.  

import matplotlib.pyplot as plt 
 
age = [22, 55, 62, 45, 21, 22, 34, 42, 42, 4, 2, 102, 95, 85, 55, 110, 120, 7, 65, 55, 
111, 115, 80, 75, 65, 4, 44, 43, 42, 48] 
bins = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100] 
 
plt.hist(age, bins, histtype='step', rwidth=0.8, color="red") 
plt.xlabel("Age Group") 
plt.ylabel("No. of People") 
plt.title("Histogram") 
plt.show()  

 
The above code will plot histogram as follow: 



 

Here, the type of histogram is set to step and color is set to red.  

We can also create the multiple histogram of different columns as follows:  

Here, we create a data frame with three different columns such as “Age”, “Height” 
and “Weight”. 

import pandas as pd 
   
df = pd.DataFrame({ 
    "Age":[25,38,45,29,65,52,46,72,28,35], 
    "Height": [145,138,160,180,165,170,158,162,171,168], 
    "Weight": [75,90,85,72,68,76,82,96,63,79]}) 
 
hist = df.hist(bins=10) 

 
The above code will plot histogram as follow: 

 



7.4.2 Scatter Plot 

Scatter plot is diagram where each value in the dataset represent by a dot. It is set of dotted 
points to represent the individual data on both horizontal and vertical axis to reveal the 
distribution trends of data. 

This plot is mostly used for large dataset to highlight the similarities in the dataset. It also 
shows the outliers and distribution of data.  

The scatter() function is used to draw the scatter plot. This function plots one dot for each 
observation. It requires two different arrays of same length for both the x-axis and y-axis.  we 
can also set the scatter plot title and labels on both the axis. 

Example: Here we take an example of boys weight and girls weight. The x-axis 
represents “Boys_Weight” and y-axis represents “Girls_Weight”. 

# Importing library 
import matplotlib.pyplot as plt 
 
# Data values 
Boys_Weight = [67, 89, 72, 114, 65, 80, 91, 106, 60, 59] 
Girls_Weight = [50, 59, 63, 40, 92, 88, 64, 45, 52, 59] 
 
# Plotting scatter plot with title and label 
plt.scatter(Boys_Weight, Girls_Weight) 
plt.title("Scatter Plot") 
plt.xlabel("Boys Weight") 
plt.ylabel("Girls Weight") 
 
# Show plot 
plt.show() 

 
The above code will create scatter plot as follow: 

 

In above plot, we can see the relationship between boys and girls weight. 



We can also compare the boys weight and girls weight of one class with another 
class.  

import matplotlib.pyplot as plt 
import numpy as np 
 
Boys_Weight = [67, 89, 72, 114, 65, 80, 91, 106, 60, 59] 
Girls_Weight = [50, 59, 63, 40, 92, 88, 64, 45, 52, 68] 
plt.scatter(Boys_Weight, Girls_Weight) 
 
Boys_Weight = [54, 67, 92, 56, 83, 65, 89, 78, 50, 49] 
Girls_Weight = [41, 79, 56, 74, 76, 73, 74, 87, 82, 63] 
plt.scatter(Boys_Weight, Girls_Weight) 
 
plt.title("Scatter Plot") 
plt.xlabel("Boys Weight") 
plt.ylabel("Girls Weight") 
 
plt.show() 

 
The above code will create scatter plot as follow: 

 

 

In above plot, we can see the relationship between boys and girls weight of one class 
with another class by using different colors. 

We can also set or change the color of both the classes of data using color as an 
argument. Here we set the red color for first class students and green color for 
second class students.  

import matplotlib.pyplot as plt 
import numpy as np 
 
Boys_Weight = [67, 89, 72, 114, 65, 80, 91, 106, 60, 59] 



Girls_Weight = [50, 59, 63, 40, 92, 88, 64, 45, 52, 68] 
plt.scatter(Boys_Weight, Girls_Weight, color="red") 
 
Boys_Weight = [54, 67, 92, 56, 83, 65, 89, 78, 50, 49] 
Girls_Weight = [41, 79, 56, 74, 76, 73, 74, 87, 82, 63] 
plt.scatter(Boys_Weight, Girls_Weight, color="Green") 
 
plt.title("Scatter Plot") 
plt.xlabel("Boys_Weight") 
plt.ylabel("Girls_Weight") 
 
plt.show() 

 
The above code will create scatter plot as follow: 

 

In above plot, we can see the relationship between both classes. Here, red color is 
used for first class students and green color is used for second class students.  

We can also set or change the size of dots using s as an argument in scatter plot.  

import matplotlib.pyplot as plt 
import numpy as np 
 
Boys_Weight = [67, 90, 72, 114, 67, 80, 91, 106, 60, 59] 
Girls_Weight = [50, 59, 63, 40, 52, 88, 60, 45, 52, 68] 
size = [200, 220, 240, 260, 280, 300, 320, 340, 360, 380] 
plt.scatter(Boys_Weight, Girls_Weight, s=size, alpha=0.5) 
 
plt.title("Scatter Plot") 
plt.xlabel("Boys_Weight") 
plt.ylabel("Girls_Weight") 
 
plt.show() 

 



The above code will create scatter plot as follow: 

 

In above plot, we can see the size of each dots.  

We can also set the shape instead of dots in scatter plot. Here we set the marker and 
edgecolor as an argument in scatter function to set the shape with edge color in 
scatter plot.  

import matplotlib.pyplot as plt 
import numpy as np 
 
Boys_Weight = [67, 89, 72, 114, 65, 80, 91, 106, 60, 59] 
Girls_Weight = [50, 59, 63, 40, 92, 88, 64, 45, 52, 68] 
plt.scatter(Boys_Weight, Girls_Weight, marker ="s", edgecolor ="green", s=50) 
 
Boys_Weight = [54, 67, 92, 56, 83, 65, 89, 78, 50, 49] 
Girls_Weight = [41, 79, 56, 74, 76, 73, 74, 87, 82, 63] 
plt.scatter(Boys_Weight, Girls_Weight, marker ="^", edgecolor ="red", s=100) 
 
plt.title("Scatter Plot") 
plt.xlabel("Boys Weight") 
plt.ylabel("Girls Weight") 
 
plt.show() 

 
The above code will create scatter plot as follow: 



 

In above plot, we can see the shape with edge color.  

7.4.3 Line Chart  

Line chart is used to shows the relation between two datasets on a different axis. There are 
multiple features available such as line color, line style, line width etc. It is also known as 
time series plot. 

Matplotlib is most popular library for plotting different chart. Line chart is one of them. The 
plot() function is used to create a line chart. Here we will see some examples of line chart in 
Python. 

Example: Here we take an example of numbers of students enroll in specific course 
in different year. The x-axis represents “Year” values and y-axis represents 
“Student”.  

# Importing library 
from matplotlib import pyplot as plt 
   
# Data values 
Year = [2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020] 
Student = [88,76,61,68,92,85,62,58,75,83] 
 
# Plotting the line 
plt.plot(Year, Student) 
 
# Show plot 
plt.show() 

 
The above code will create line chart as follow: 



 

In this chart, there is no label on both the axis and title of chart. Label is required to 
understand the dimensions of chart. The following code will create the line chart 
with title and labeled on  both axes. 

from matplotlib import pyplot as plt 
   
Year = [2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020] 
Student = [88,76,61,68,92,85,62,58,75,83] 
 
plt.title("Line Chart")  
plt.xlabel("Year")  
plt.ylabel("No. of Students")  
 
plt.plot(Year, Student) 
 
plt.show() 

 
The above code will create line chart as follow: 

 

We can set the line color also using color as an argument. Here we set red color to 
the line. 

from matplotlib import pyplot as plt 
   



Year = [2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020] 
Student = [88,76,61,68,92,85,62,58,75,83] 
 
plt.title("Line Chart")  
plt.xlabel("Year")  
plt.ylabel("No. of Students")  
 
plt.plot(Year, Student) 
 
plt.plot(Year, Student, 'red') 
 
plt.show() 

 
The above code will create line chart as follow: 

 

We can set the line width also using linewidth or lw as an argument. Here we set 10 
to the linewidth. 

from matplotlib import pyplot as plt 
   
Year = [2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020] 
Student = [88,76,61,68,92,85,62,58,75,83] 
 
plt.title("Line Chart")  
plt.xlabel("Year")  
plt.ylabel("No. of Students")  
 
plt.plot(Year, Student) 
 
plt.plot(Year, Student, 'green', linewidth=10) 
plt.plot(Year, Student,'*') 
plt.show() 

 



The above code will create line chart as follow: 

 

 

We can set the line style also using linestyle or ls as an argument. There are various 
types of style available such as solid, dotted, dashed and dashdot. Here we set dotted 
as a linestyle in line chart. 

from matplotlib import pyplot as plt 
   
Year = [2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020] 
Student = [88,76,61,68,92,85,62,58,75,83] 
 
plt.title("Line Chart")  
plt.xlabel("Year")  
plt.ylabel("No. of Students")  
 
plt.plot(Year, Student, linestyle = 'dotted') 
 
plt.plot(Year, Student,'*') 
 
plt.show() 

 
The above code will create line chart as follow: 



 

We can set the multiple lines in a single line chart. Here x-axis and y-axis represent 
the different values. We plot the line chart separately for both the axis. Here we set 
the dotted as a linestyle in x-axis. 

 

from matplotlib import pyplot as plt 
   
X = [36,41,56,82,64,38,73,59,38,78] 
Y = [73,46,73,68,54,56,63,80,54,67] 
 
plt.plot(X, linestyle = 'dotted') 
 
plt.plot(Y) 
 
plt.show() 

 
The above code will create line chart as follow: 

Here the dotted line represents the x-axis and solid line represent the y-axis. 

 

7.4.4 Bar Chart 

Bar chart or bar plot is representing the category of data with rectangular bars with different 
heights and lengths with reference to the values that they present. The bar() function is used 
to create a bar chart. The bar chart can be plotted both horizontally and vertically.  



The bar chart describes the comparisons between distinct categories. One axis represents the 
particular categories being compared and another axis represent the measured values 
respected to those categories. The numerical values of variables in a dataset represent the 
height or length of bar. 

Example: Here we take an example of students name and age. The x-axis represents 
“Name” and y-axis represents “Age”. Here we also set the chart title and labels on 
both the axis. 

# Importing library 
from matplotlib import pyplot as plt 
import numpy as np 
 
Name = np.array(["Rahul", "Shreya", "Pankaj", "Monika", "Kalpesh"]) 
Age = np.array([20, 30, 24, 15, 12]) 
 
# Labelling the axes and title 
plt.title("Bar Chart")  
plt.xlabel("Name")  
plt.ylabel("Age")  
 
# Plotting the bar 
plt.bar(Name, Age) 

 
The above code will create bar chart as follow: 

 

We can change the bar color also. We set color as an argument to change the color 
of bar. Here we set the red as a color of bar.  

from matplotlib import pyplot as plt 
import numpy as np 
 
Name = np.array(["Rahul", "Shreya", "Pankaj", "Monika", "Kalpesh"]) 
Age = np.array([20, 30, 24, 15, 12]) 
 



plt.title("Bar Chart")  
plt.xlabel("Name")  
plt.ylabel("Age")  
 
plt.bar(Name, Age, color="red") 

 
The above code will create bar chart as follow: 

 

We can set the bar width also. We set width as an argument to set the width of bar. 
Here we set 0.2 as a width of bar.  

from matplotlib import pyplot as plt 
import numpy as np 
 
Name = np.array(["Rahul", "Shreya", "Pankaj", "Monika", "Kalpesh"]) 
Age = np.array([20, 30, 24, 15, 12]) 
 
plt.title("Bar Chart")  
plt.xlabel("Name")  
plt.ylabel("Age")  
 
plt.bar(Name, Age, width=0.2) 

 
The above code will create bar chart as follow: 



 

We can display bar horizontally also instead of vertically. We set the bar 
horizontally by using barh() function.  

from matplotlib import pyplot as plt 
import numpy as np 
 
Name = np.array(["Rahul", "Shreya", "Pankaj", "Monika", "Kalpesh"]) 
Age = np.array([20, 30, 24, 15, 12]) 
 
plt.title("Bar Chart")  
plt.xlabel("Age")  
plt.ylabel("Name")  
 
plt.barh(Name, Age) 

 
The above code will create bar chart as follow: 

 

 

The multiple bar chart is used to represent the comparison among the different 
variables in a dataset. We can set the thickness and positions of bars also. 



Here, we take an example of marks of different subject with the name of students. 
X-axis represents the students and y-axis represents the marks of different subjects.  

from matplotlib import pyplot as plt 
import pandas as pd 
 
df = pd.DataFrame({ 
"Name":["Rahul","Shreya","Pankaj","Monika","Kalpesh"], 
"Maths":[67,83,74,91,56], 
"Biology":[90,78,86,75,68], 
"English":[60,55,63,71,88]}) 
 
df.plot.bar() 

 
The above code will create bar chart as follow: 

Here, we show the comparisons of marks of different subjects of the students.  

 

7.5 GRAPH 
Graph is a pictorial representation of a set of objects. Some pairs of objects are connected 
through links. The interaction of link is denoted by points which is known as vertices. The 
link which is used to connect the vertices is called edges. We can perform some operation on 
graph such as: 

 Display vertices 
 Display edges 
 Add new vertex 
 Add new edge 
 Create graph 

The dictionary data type is used to present a graph in Python. The vertices of a graph are 
representing as the keys of dictionary and the links between the vertices also called edges 
which represent as the values of dictionary 

Take the following graph as an example. 



 

The above graph consists the following vertices (V) and edges (E). 

V = {A, B, C, D, E} 
E = {AB, AC, BC, BD, CE, DE} 

 
The above graph represents using Python as below. 

# Create the dictionary with graph elements 
graph = { "a" : ["b","c"], 
          "b" : ["a","c", "d"], 
          "c" : ["a","b", "e"], 
          "d" : ["b","e"], 
          "e" : ["c","d"] 
         } 
 
# Print the graph  
print(graph) 

 
The code will give the following output. 

 

{'a': ['b', 'c'], 'b': ['a', 'c', 'd'], 'c': ['a', 'b', 'e'], 'd': ['b', 'e'], 'e': ['c', 'd']} 

 

7.6 3D VISULIZATION AND PRESENTATION 
The matplotlib library is most popular for data visualization in Python. It was initially 
designed for two-dimension plotting, but some three-dimension plotting utilities were built on 
top matplotlib‟s two-dimension display in later versions.  Three dimensional plots are 
enabling by importing the mplot3d toolkit, which included with the main matplotlib. 

A three-dimensional axis can be created by using the keyword projection=“3d” as 
follows. 

 

 

 



 

# Importing library 
import matplotlib.pyplot as plt 
 
# 3D projection plot 
fig = plt.figure() 
ax = plt.axes(projection ="3d") 
plt.title("3D Projection", color="blue") 

 
The above code will plot as follow: 

 

7.6.1 3D Line Plot 

This is a most basic three-dimensional plot created using set of (x, y, z) triples. It is also 
known as time series plot. This plot is plotted using ax.plot3D function as follow: 
 

# Importing library 
from mpl_toolkits import mplot3d 
import numpy as np 
import matplotlib.pyplot as plt 
   
# 3D projection 
fig = plt.figure() 
ax = plt.axes(projection = "3d") 
   
# All three axis  
z = np.linspace(0, 1, 100) 
x = z * np.sin(50 * z) 
y = z * np.cos(50 * z) 
   
# 3D Line plotting 
ax.plot3D(x, y, z, "purple") 
ax.set_title("3D Line Plot", color="blue") 



plt.show() 

 
The above code will plot as follow: 

 
7.6.2 3D Scatter Plot 

This is a basic three-dimensional plot created using set of (x, y, z) triples. It represents 
the data points on three axes to show the relationship between three variables. This plot 
is plotted using ax.scatter3D function as follow: 
 

# Importing library 
from mpl_toolkits import mplot3d 
import numpy as np 
import matplotlib.pyplot as plt 
 
# 3D projection 
fig = plt.figure() 
ax = plt.axes(projection = "3d") 
 
# All three axis  
z = np.linspace(0, 1, 100) 
x = z * np.sin(25 * z) 
y = z * np.cos(25 * z) 
 
# 3D scatter plotting 
ax.scatter3D(x, y, z, color="red") 
ax.set_title("3D Scatter Plot", color="blue") 
plt.show() 

 
The above code will plot as follow: 



 
7.6.3 3D Bar Plot 

The three-dimensional bar plot is used to compare the relationship between three 
variables. This plot is plotted using ax.bar3d function as follow: 
 

# Importing library 
from mpl_toolkits.mplot3d import axes3d 
import matplotlib.pyplot as plt 
import numpy as np 
from matplotlib import style 
 
# 3D projection 
fig = plt.figure() 
ax = fig.add_subplot(111, projection="3d") 
 
# All three axis  
x = [1,3,5,7,9,11,7,3,5,6] 
y = [5,7,2,6,4,6,5,3,6,7] 
z = np.zeros(10) 
 
dx = np.ones(10) 
dy = np.ones(10) 
dz = [1,3,5,7,9,11,7,5,3,7] 
 
# 3D Bar plotting 
ax.bar3d(x, y, z, dx, dy, dz, color="orange") 
ax.set_title("3D Bar Plot", color="blue") 
ax.set_xlabel("X-axis") 
ax.set_ylabel("Y-axis") 
ax.set_zlabel("Z-axis") 
plt.show() 



 
The above code will plot as follow: 
 

 
 

7.6.4 3D Wire Plot 
This plot takes a grid of values and draws the lines between nearby points on three-
dimensional surface. This plot is plotted using ax.plot_wireframe method as follow: 
 

# Importing library 
import numpy as np 
import matplotlib.pyplot as plt 
 
# 3D projection 
fig = plt.figure() 
ax = plt.axes(projection="3d") 
 
# Function 
def func(x, y): 
    return np.sin(np.sqrt(x * x + y * y)) 
 
# All three axis  
x = np.linspace(-5, 5, 25) 
y = np.linspace(-5, 5, 25) 
X, Y = np.meshgrid(x, y) 
Z = func(X, Y) 
 
# 3D wireframe plotting 
ax.plot_wireframe(X, Y, Z, color="Green") 
ax.set_title("3D Wire Plot", color="blue") 
plt.show() 

 
The above code will plot as follow: 



 

 
7.6.5 3D Surface Plot 

This plot is like as wireframe plot, but each face of the wireframe is filled polygon.  
This plot shows the functional relationship between one dependent variable and two 
independent variables. This plot is plotted using ax.plot_surface method as follow: 
 

# Importing library 
import numpy as np 
import matplotlib.pyplot as plt 
 
# 3D projection 
fig = plt.figure() 
ax = plt.axes(projection="3d") 
 
# Function  
def func(x, y): 
    return np.sin(np.sqrt(x * x + y * y)) 
 
# All three axis  
x = np.linspace(-5, 5, 25) 
y = np.linspace(-5, 5, 25) 
X, Y = np.meshgrid(x, y) 
Z = func(X, Y) 
 
# 3D surface plotting 
ax.plot_surface(X, Y, Z, rstride=1, cstride=1,cmap='viridis', edgecolor='none') 
ax.set_title("3D Surface Plot", color="blue") 
plt.show() 

 
The above code will plot as follow: 
 



 
 

7.7 SUMMARY  
The students will learn many things in this module and they will be able to perform the 
various data science related operation using Python. 

 Ability to do understand the generative and predictive modeling. 
 Ability to plot the various types of charts including histogram, scatter plot, line or 

timeseries plot, bar plot from the dataset. 
 Ability to prepare a graph. 
 Ability to plot the various types of three-dimension graph. 
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QUESTIONS 

Short Answer: 

11. What is generative modeling? 
12. What is predictive modeling? 
13. List the types of predictive modeling. 
14. What is chart? 
15. What is histogram? 
16. List types of charts. 
17. What is graph? 
18. List the 3D plots. 

Long Answer: 

13. Explain predictive modeling in details. 
14. Explain histogram with example. 
15. Explain scatter plot with example. 
16. Explain line chart or time series plot with example. 
17. Explain bar plot with example. 
18. Explain three-dimensional plot with example. 

 

PRACTICALS  

7. Create and display histogram with different arguments. 
8. Create and display scatter plot with different arguments. 
9. Create and display time series plot with different arguments. 
10. Create and display bar plot with different arguments. 
11. Create a simple graph. 
12. Create and display various 3D plots. 
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