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PREFACE 

 Jagat Guru Nanak Dev Punjab State Open University, Patiala was established in Decembas 

2019 by Act 19 of the Legislature of State of Punjab. It is the first and only Open Universit of 

the State, entrusted with the responsibility of making higher education accessible to all 

especially to those sections of society who do not have the means, time or opportunity to 

pursue regular education. 

 In keeping with the nature of an Open University, this University provides a flexible education 

system to suit every need. The time given to complete a programme is double the duration of a 

regular mode programme. Well-designed study material has been prepared in consultation with 

experts in their respective fields. 

 The University offers programmes which have been designed to provide relevant, skill-based 

and employability-enhancing education. The study material provided in this booklet is self 

instructional, with self-assessment exercises, and recommendations for further readings. The 

syllabus has been divided in sections, and provided as units for simplification. 

 The Learner Support Centres/Study Centres are located in the Government and Government 

aided colleges of Punjab, to enable students to make use of reading facilities, and for 

curriculum-based counselling and practicals. We, at the University, welcome you to be a part of 

this institution of knowledge. 

 

Prof. G. S. Batra, 
 Dean Academic Affairs 
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Section A 

Unit I: Data Structure: Introduction to data structure and algorithm, various phases of 
algorithms, Pointers, working with pointers, pointers and function,  structure, union, 
classification of data structures Algorithm analysis: Time space trade off algorithms and Big O 
notation.  

Unit II: Arrays: Introduction, one dimensional and multidimensional arrays, memory 
representation of arrays, operations on arrays, sparse arrays and sparse matrices and their 
implementation, Advantages and limitation of arrays. 

Unit II: Linked List: Introduction; operation on linked list, circular linked list, doubly linked 
list, header linked list, implementation of linked list, application of linked lists. 

Unit III: Stacks: Introduction; array representation of stacks, Operation on stacks; Linked 
representation of stacks Implementation of stacks, Application of stacks: matching    parenthesis, 
evaluation of arithmetic expressions, and conversion from infix to post fix, recursion. 

 
 

SECTION B 
Unit IV: Queues: Introduction, operation on queues, linked representation & implementation 
of queue, Applications of queues, circular queue, memory representation of queues, dequeus,   
priority queues, Multiple queues,  application of queues. 

Unit V: Trees: Introduction; Binary Tree; Complete Binary Trees, Extended Binary Trees, 
representation of binary trees in the memory , traversing a binary tree, Binary Search Tree, 
Operations on Binary Search Tree; Balanced Trees- AVL; B- Trees; Heap, Applications of 
trees 

Unit VI: Graphs: Introduction Graph: Graph terminology, Memory Representation of Graphs: 
adjacency matrix representation of graphs, adjacency list or linked representation of graphs, 
graph traversal algorithms, Operations performed on   graphs.  

Unit VII: Searching: Linear Search, Binary Search, Fibonacci Search, Sorting : Selection 
Sort, Insertion Sort, Merge Sort, Bucket Sort, Radix Sort, Quick Sort and Heap Sort 

Reference Books: 
1. A.Tanenbaum,Y.LanhgsamandA.J.Augenstein,"Data Structures UsingC",PHI. 
2. Loomis,Marry,―Data Management and File Structures‖, PHI 
3. Seymour Lipschultz,― Theory and Practice of Data Structures" Mc Graw-Hill.  
4. E.Horowitz and S.Sahni, ―Data Structures with Pascal",Galgotia. 
5. M.J.Folk, B.Zoellick, G Riccardi,―File Structures‖, Pearson Education. 
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1.1 INTRODUCTION 
 Data Structures is the concept of set of algorithms used to structure the information. 
 These algorithms are implemented using C, C++, Java, etc 

 Structure the information means store and process data in an efficient manner. 
 To store and process data we may use the following operations   

 create()  
 sorting() 
 insert()  
 merging()  
 delete()  
 splitting() 
 display() 
 traversal()  
 searching() 

 So data structure may contain algorithms, use for different operations implement these 
algorithms by a programming language 

 For example for stack data structure write algorithms for different 
operations  

 Push 
 Pop 
 Display  

1.2  CLASSIFICATION OF DATA STRUCTURES: 
 Data structures are normally classified into two types. 
 They are primitive data structures and non-primitive data structures. 
(i) Primitive data structures: 
 Primitive data structures are built in types in most programming languages. They are 
 Integer: It is whole numbers. i.e. negative values,0,positive values 
 Float: It is fractional numbers 
 Character: It is character values 
 Boolean: it represents true or false. 
(ii) Non-primitive data structures: 
 These are derived from primitive data structures. 
 They are Array, Structure, Union, Files etc 
 A Non-primitive data type is further divided into Linear and Non-Linear data structure. 
(a) Linear data structures: 
 Here the data elements are connected in a sequence manner. 
 Examples are Arrays, Linked List, Stacks and Queues. 
Array: 
 It is collection of elements of the same type 

 
Linked List: 
 linked list or single linked list is a sequence of elements in which every element has link to its 

next element in the sequence. 
 Every element is called as a "node". Every "node" contains two fields, data and link. The data 

is a value or string and link is an address of next node. 



 The first node is called HEAD which is an empty node contains an address of the first node so it 
link to the first node. 

 The first node link to the second node and so on. 
 The last node does not link to address but link to NULL. Let ptr be a pointer to the linked 

list. The example is given below 

 
Stack: 
 A stack is a data structure in which additions and deletions are made at the top of the stack. So 

we can perform two operations on stack. 
1. Adding elements into the 

stack known as push; 2.Deleting 
elements from the stack known as pop 

 
Queue: 

 A queue is a data structure in which additions are made at one end and deletions are made 
at the other end. We can represent a queue in an array. 
 Here we can perform two operations on queue. 

1. Adding elements into the queue known as 
insertion at rear 2.Deleting elements from the queue 
known as deletion from front 

 
 

(b) Non-linear data structures: 
 Here data elements are not connected in a sequence manner. 
 Examples are: Trees and Graphs. 
Tree: 
 The tree is defined as a finite set of one or more 

nodes such that 1.One node is called a root node and 
2. Remaining nodes partitioned into sub trees of the root. 

Level 1 

 
2 

 
 

3 
 
 

4 

  

 

       

 

 

   

      

   



 

 

Graph: 
 A graph is a pictorial representation of a set of points or nodes termed as vertices, and 

the links that connect the vertices are called edges. 
 A Graph(G) consists of two sets V and E where V is called vertices and E is called edges. 

We also write G = (V,E) to represent a graph. 
 A Graph may be directed graph and undirected graph. 

 
 The Fig(a),Fig(b) are called undirected graph & Fig(c) is called directed graph. 
 
Differences between Linear and Non Linear Data Structures: 

 Linear Data Structure Non-Linear Data Structure 

Every data element is connected to its 
previous & 

next one 

Every data element is connected with many other 
data elements. 

Data is arranged in a sequence manner Data is not arranged in a sequence manner 
Data can be traversed in a single run Data cannot be traversed in a single run 
Ex: Array, Stack, Queue, Linked List Ex: Tree, Graph 
Implementation is easy Implementation is difficult 

 
1.3 ALGORITHM DEVELOPMENT PROCESS 

Every problem solution starts with a plan. That plan is called an algorithm. 

1.3.1 An algorithm is a plan for solving a problem. 

There are many ways to write an algorithm. Some are very informal, some are quite formal and 
mathematical in nature, and some are quite graphical. The instructions for connecting a DVD player 
to a television are an algorithm. A mathematical formula such as πR2 is a special case of an 

algorithm. The form is not particularly important as long as it provides a good way to describe and 
check the logic of the plan. 

The development of an algorithm (a plan) is a key step in solving a problem. Once we have an 
algorithm, we can translate it into a computer program in some programming language. Our algorithm 
development process consists of five major steps. 

Step 1: Obtain a description of the problem. 

Step 2: Analyze the problem. 

Step 3: Develop a high-level algorithm. 

   

     

 

 

    

 

 

 



 

 

Step 4: Refine the algorithm by adding more detail. 

Step 5: Review the algorithm. 

Step 1: Obtain a description of the problem. 

This step is much more difficult than it appears. In the following discussion, the word client refers to 
someone who wants to find a solution to a problem, and the word developer refers to someone who 
finds a way to solve the problem. The developer must create an algorithm that will solve the client's 
problem. 

The client is responsible for creating a description of the problem, but this is often the weakest part of 
the process. It's quite common for a problem description to suffer from one or more of the following 
types of defects: (1) the description relies on unstated assumptions, (2) the description is ambiguous, 
(3) the description is incomplete, or (4) the description has internal contradictions. These defects are 
seldom due to carelessness by the client. Instead, they are due to the fact that natural languages 
(English, French, Korean, etc.) are rather imprecise. Part of the developer's responsibility is to identify 
defects in the description of a problem, and to work with the client to remedy those defects. 

Step 2: Analyze the problem. 

The purpose of this step is to determine both the starting and ending points for solving the problem. 
This process is analogous to a mathematician determining what is given and what must be proven. A 
good problem description makes it easier to perform this step. 

When determining the starting point, we should start by seeking answers to the following questions: 

What data are available? 

Where is that data? 

What formulas pertain to the problem? 

What rules exist for working with the data? 

What relationships exist among the data values? 

When determining the ending point, we need to describe the characteristics of a solution. In other 
words, how will we know when we're done? Asking the following questions often helps to determine 
the ending point. 

What new facts will we have? 

What items will have changed? 

What changes will have been made to those items? 

What things will no longer exist? 

Step 3: Develop a high-level algorithm. 



 

 

An algorithm is a plan for solving a problem, but plans come in several levels of detail. It's usually 
better to start with a high-level algorithm that includes the major part of a solution, but leaves the 
details until later. We can use an everyday example to demonstrate a high-level algorithm. 

Problem: I need a send a birthday card to my brother, Rohit . 

Analysis: I don't have a card. I prefer to buy a card rather than make one myself. 

High-level algorithm: 

Go to a store that sells greeting cards 

Select a card 

Purchase a card 

Mail the card 

This algorithm is satisfactory for daily use, but it lacks details that would have to be added were a 
computer to carry out the solution. These details include answers to questions such as the following. 

"Which store will I visit?" 

"How will I get there: walk, drive, ride my bicycle, take the bus?" 

"What kind of card does Rohit like: humorous, sentimental, risqué?" 

These kinds of details are considered in the next step of our process. 

Step 4: Refine the algorithm by adding more detail. 

A high-level algorithm shows the major steps that need to be followed to solve a problem. Now we 
need to add details to these steps, but how much detail should we add? Unfortunately, the answer to 
this question depends on the situation. We have to consider who (or what) is going to implement the 
algorithm and how much that person (or thing) already knows how to do. If someone is going to 
purchase Rohit's birthday card on my behalf, my instructions have to be adapted to whether or not that 
person is familiar with the stores in the community and how well the purchaser known my brother's 
taste in greeting cards. 

When our goal is to develop algorithms that will lead to computer programs, we need to consider the 
capabilities of the computer and provide enough detail so that someone else could use our algorithm 
to write a computer program that follows the steps in our algorithm. As with the birthday card 
problem, we need to adjust the level of detail to match the ability of the programmer. When in doubt, 
or when you are learning, it is better to have too much detail than to have too little. 

Most of our examples will move from a high-level to a detailed algorithm in a single step, but this is not 
always reasonable. For larger, more complex problems, it is common to go through this process 
several times, developing intermediate level algorithms as we go. Each time, we add more detail to 
the previous algorithm, stopping when we see no benefit to further refinement. This technique of 
gradually working from a high-level to a detailed algorithm is often called stepwise refinement. 

Stepwise refinement is a process for developing a detailed algorithm by gradually adding detail to a 
high-level algorithm. 



 

 

#include <stdio.h> 
int main() 
{ 

int num = 10; 
printf("Value of variable num is: %d", num); 
/* To print the address of a variable we use %p 
* format specifier and ampersand (&) sign just 
* before the variable name like &num. 
*/ 

printf("\nAddress of variable num is: %p", &num); 
return 0; 

} 

Value of variable num is: 10 
Address of variable num is: 0x7fff5694dc58 

Step 5: Review the algorithm. 

The final step is to review the algorithm. What are we looking for? First, we need to work through the 
algorithm step by step to determine whether or not it will solve the original problem. Once we are 
satisfied that the algorithm does provide a solution to the problem, we start to look for other things. 
The following questions are typical of ones that should be asked whenever we review an algorithm. 
Asking these questions and seeking their answers is a good way to develop skills that can be applied 
to the next problem. 

 

Does this algorithm solve a very specific problem or does it solve a more general problem? If it solves a 
very specific problem, should it be generalized. 

Pointers  

A pointer is a variable that stores the address of another variable. Unlike other variables that hold 
values of a certain type, pointer holds the address of a variable. For example, an integer variable holds 
(or you can say stores) an integer value, however an integer pointer holds the address of a integer 
variable. 

A simple example to understand how to access the address of a variable without 
pointers? 

In this program, we have a variable num of int type. The value of num is 10 and this value must 
be stored somewhere in the memory, right? A memory space is allocated for each variable that 
holds the value of that variable, this memory space has an address. For example we live in a 
house and our house has an address, which helps other people to find our house. The same way 
the value of the variable is stored in a memory address, which helps the C program to find that 
value when it is needed. 

 
So let‘s say the address assigned to variable num is 0x7fff5694dc58, which means whatever value 

we would be assigning to num should be stored at the location: 0x7fff5694dc58. See the diagram 
below. 

 

Output: 
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2.1 INTRODUCTION 
 
A linked list is a collection of data elements called nodes in which the linear representation is given 

by links from one node to the next node. A linked list does not store its elements in consecutive 
memory locations and the user can add any number of elements to it. 

The elements in a linked list can be accessed only in a sequential manner. But like an array, insertions 
and deletions can be done at any point in the list in a constant time. 

A linked list, in simple terms, is a linear collection of data elements. These data elements are called 
nodes. Linked list is a data structure which in turn can be used to implement other data structures. 

Thus, it acts as a building block to implement data structures such as stacks, queues, and their 
variations. 

Basic Terminology: 
 
A linked list can be perceived as a train or a sequence of nodes in which each node contains one or 

more data fields and a pointer to the next node. 
 

 
We can see a linked list in which every node contains two parts, an integer and a pointer to the next 

node. The last node will have no next node connected to it, so it will store a special value called 
NULL. 

Since in a linked list, every node contains a pointer to another node which is of the same type, it is 
also called a self-referential data type. 

Let us see how a linked list is maintained in the memory. When we traverse DATA and NEXT in this 
manner, we finally see that the linked list in the above example stores characters that when put 
together form the word HELLO. 

 

 
 
Linked Lists versus               Arrays: 



 

 

Both arrays and linked lists are a linear collection of data elements. But unlike an array, a linked list 
does not store its nodes in consecutive memory 

locations. Another point of difference between an array and a linked list is that a linked list does not 
allow random access of data. Nodes in a linked list can be accessed only in a sequential manner. 

Another advantage of a linked list over an array is that     we can add any number of elements in the 
list. This is not possible in case of an array. 

Memory Allocation and De-allocation for a Linked List: 
 
If we want to add a node to an already existing linked list in the memory, we first find free space in 

the memory and then use it to store the information. 

Now, the question is which part of the memory is available and which part is occupied? When we 
delete a node from a linked list, then who changes the status of the memory occupied by it from 
occupied to available? The answer is the operating system. 

The operating system scans through all the memory cells and marks those cells that are being used by 
some program. Then it collects all the cells which are not being used and adds their address to the 
free pool, so that these cells can be reused by other programs. This process is called garbage 
collection. 

2.2 SINGLE LINKED LISTS: 
 
A singly linked list is the simplest type of linked list in which every node contains some data and a 

pointer to the next node of the same data type. 
 

 
Traversing a linked list means accessing the nodes of the list in order to perform some processing on 

them. Remember a linked list always contains a pointer variable START which stores the address of 
the first node of the list. End of the list is marked by storing NULL or –1 in the NEXT field of the 
last node. 

2.3 OPERATIONS 
 
Traversing a Linked List: 
 
For traversing the linked list, we also make use of another pointer variable PTR which points to the 

node that is currently being accessed. Algorithm for traversing a linked list 
 



 

 

 

Searching for a Value in a Linked List: 
 
Searching a linked list means to find a particular element in the linked list. So searching means 

finding whether a given value is present in the information part of the node or not. If it is present, 
the algorithm returns the address of the node that contains the value. However, if the search is 
unsuccessful, POS is set to NULL which indicates that VAL is not present in the linked list. 

Consider the linked list shown in below. If we have VAL = 4, then the flow of the algorithm can be 
explained as shown in the figure. 

 
 

 

 
 

Inserting a New Node in a Linked List: 
 
we will see how a new node is added into an already existing linked list. We will take four cases and 

then see how insertion is done in each case. 

Case 1: The new node is inserted at the beginning. Case 
2: The new node is inserted at the end. 

Case 3: The new node is inserted after a given node. 
Case 4: The new node is inserted before a given node. 



 

 

Let us first discuss an important term called OVERFLOW. Overflow is a condition that occurs when 
AVAIL = NULL or no free memory cell is present in the system. When this condition occurs, the 
program must give an appropriate message. 

 
 
Case 1: Inserting a Node at the Beginning of a Linked List 
 
Inserting a Node at the Beginning of a Linked List. Consider the linked list shown in below figure. 

Suppose we want to add a new node with data 9 and add it as the first node of the list. 
 

 

 
 

 
 
 

 
 

Case 2: Inserting a Node at the End of a Linked List 



 

 

 

 

 
Case 3: Inserting a Node After a Given Node in a Linked List 
 
Consider the linked list shown in below figure. Suppose we want to add a new node with value 9 after 

the node containing 3. 



 

 

 

 

 
 



 

 

Case 4: Inserting a Node Before a Given Node in a Linked List 
 
Consider the linked list shown in below figure. Suppose we want to add a new node with value 9 

before the node containing 3. 

 
 

 
 

 

 
 

 
 



 

 

 
Deleting a Node from a Linked List: 
 
We will discuss how a node is deleted from an already existing linked list. We will consider three 

cases and then see how deletion is done in each case. 

Case 1: The first node is 

deleted. Case 2: The last node 

is deleted. 

Case 3: The node after a given node is deleted. 
 
Case 1: Deleting a First Node from a Linked List 
 

 

 
Case 2: Deleting the Last Node from a Linked List 

 



 

 

 

 
 

 
 
Case 3: Deleting After a Given Node in a Linked List 
 
Consider the linked list shown in below figure. Suppose we want to delete the node that succeeds the 

node which contains data value 4. 
 

 

 

 

 



 

 

 

 
 

2.4 APPLICATIONS ON SINGLE LINKED LIST 
 
 Implementation of stacks and queues. 
 Implementation of graphs: Adjacency list representation of graphs is most popular which 

uses linked list to store adjacent vertices. 

 Dynamic memory allocation: We use linked list of free blocks. 

 Maintaining directory of names. Performing arithmetic operations on long integers 

 Manipulation of polynomials by storing constants in the node of linked list. Representing 
sparse matrices 

 

Advantages of Single Linked list: 

 Insertions and Deletions can be done easily. 

 It does not need movement of elements for insertion and deletion. 

 Space is not wasted as we can get space according to our requirements. 

 Its size is not fixed. It can be extended or reduced according to requirements. 

 Elements may or may not be stored in consecutive memory available, even then we can store the 
data in computer. 

 It is less expensive. 
 
Disadvantages of Single Linked list: 

 It requires more space as pointers are also stored with information. 

 Different amount of time is required to access each element. 

 If we have to go to a particular element then we have to go through all those elements that come 
before that element. 

 We cannot traverse it from last & only from the beginning. 

 It is not easy to sort the elements stored in the linear linked list. 
 
 

2.5 DOUBLY LINKED LIST 
A doubly linked list or a two-way linked list is a more complex type of linked list which contains 

a pointer to the next as well as the previous node in the sequence. 



 

 

Therefore, it consists of three parts—data, a pointer to the next node, and a pointer to the previous 
node. 

 
 
A doubly linked list provides the ease to manipulate the elements of the list as it maintains pointers to 

nodes in both the directions (forward and backward). 
The main advantage of using a doubly linked list is that it makes searching twice as 

efficient. Let us view how a doubly linked list is maintained in the memory. 
 

 
 
 
Inserting a New Node in a Doubly Linked List: 
In this section, we will discuss how a new node is added into an already existing doubly linked list. 

We will take four cases and then see how insertion is done in each case. 
 
Case 1: The new node is inserted at the beginning. Case 

2: The new node is inserted at the end. 
Case 3: The new node is inserted after a given node. 

Case 4: The new node is inserted before a given node. 
 
Case 1: Inserting a Node at the Beginning of a Doubly Linked List 
 

 
  



 

 

 

 

 
 

Case 2: Inserting a Node at the end of a Doubly Linked List 
 



 

 

 
  
Case 3: Inserting a Node After a Given Node in a Doubly Linked List 
 

 
 

 
 

 
 

 
 

 
 



 

 

 
  
Case 4: Inserting a Node Before a Given Node in a Doubly Linked List 
 

 
 

 
 

 
 

 
 



 

 

 
 

 
 
Deleting a Node from a Doubly Linked List 
In this section, we will see how a node is deleted from an already existing doubly linked list. We will 

take four cases and then see how deletion is done in each case. 
 
Case 1: The first node is 

deleted. Case 2: The last node 
is deleted. 

Case 3: The node after a given node is deleted. Case 
4: The node before a given node is deleted. 

 
Case 1: Deleting the First Node from a Doubly Linked List 
 

 
 



 

 

 
 
 
Case 2: Deleting the Last Node from a Doubly Linked List 
 

 
 

 
 
 

 



 

 

 
 

Case 3: Deleting the Node After a Given Node in a Doubly Linked List 
 

 
 

 
 

 

 
 
 

 
 
 
 
 



 

 

 

 
 
 
Case 4: Deleting the Node Before a Given Node in a Doubly Linked List 
 

 
 

 
 

 
 

 
 
 

 
 
 



 

 

 

 
 

2.6 CIRCULAR LINKED LIST 
In a circular linked list, the last node contains a pointer to the first node of the list. We can have a 

circular singly linked list as well as a circular doubly linked list. 
 
While traversing a circular linked list, we can begin at any node and traverse the list in any 

direction, forward or backward, until we reach the same node where we started. Thus, a circular 
linked list has no beginning and no ending. 

 
Note that there are no NULL values in the NEXT part of any of the nodes of list. 

 

Operation: 
Inserting a New Node in a Circular Linked List 
 
In this section, we will see how a new node is added into an already existing linked list. We will 

take two cases and then see how insertion is done in each case. 
 
Case 1: The new node is inserted at the beginning of the circular linked list. Case 2: 

The new node is inserted at the end of the circular linked list. 
 
Case 1: Inserting a Node at the Beginning of a Circular Linked List 
 

  



 

 

 

 
 
 

 

 
 
 

 
 
Case 2: Inserting a Node at the End of a Circular Linked List 
 



 

 

 

 
 

 
 

 
 

 
 
 
 

Deleting a Node from a Circular Linked List 
 
In this section, we will discuss how a node is deleted from an already existing circular linked list. 
We will take two cases and then see how deletion is done in each case. Rest of the cases of deletion 

are same as that given for singly linked lists. 
 
Case 1: The first node is 



 

 

deleted. Case 2: The last node 
is deleted. 

Case 1: Deleting the First Node from a Circular Linked List 
 

 
 
 

 
 
 
Case 2: Deleting the Last Node from a Circular Linked List 
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3.1 INTRODUCTION  
 
Let us explain the concept of queues using the analogies given below. 
 People moving on an escalator. The people who got on the escalator first will be the first one to step 

out of it. 
 People waiting for a bus. The first person standing in the line will be the first one to get into the bus. 
 People standing outside the ticketing window of a cinema hall. The first person in the line will get the 

ticket first and thus will be the first one to move out of it. 
 Luggage kept on conveyor belts. The bag which was placed first will be the first to come out at the 

other end. 
 Cars lined at a toll bridge. The first car to reach the bridge will be the first to leave. 
 
In all these examples, we see that the element at the first position is served first. Same is the case with 

queue data structure. A queue is a FIFO (First-In, First-Out) data structure in which the element that 
is inserted first is the first one to be taken out. The elements in a queue are added at one end called the 
REAR and removed from the other end called the FRONT. Queues can be implemented by using either 
arrays or linked lists. In this section, we will see how queues are implemented using each of these data 
structures. 

 
3.2 ARRAY REPRESENTATION OF QUEUES 
 
Queues can be easily represented using linear arrays. As stated earlier, every queue has front and rear 

variables that point to the position from where deletions and insertions can be done, respectively. 
The array representation of a queue is shown in Fig. 3.1. 
 

 

Operations on Queues 
 
In Fig. 3.1, FRONT = 0 and REAR = 5. Suppose we want to add another element with value 45, then 

REAR would be incremented by 1 and the value would be stored at the position pointed by REAR. 
 
The queue after addition would be as shown in Fig. 3.2. Here, FRONT = 0 and REAR = 6. Every time a 

new element has to be added, we repeat the same procedure. 
 
If we want to delete an element from the queue, then the value of FRONT will be incremented. Deletions 

are done from only this end of the queue. The queue after deletion will be as shown in Fig. 3.3. 
Here, FRONT = 1 and REAR = 6. 
 
However, before inserting an element in a queue, we must check for overflow conditions. An overflow 

will occur when we try to insert an element into a queue that is already full. When REAR = MAX – 1, 
where MAX is the size of the queue, we have an overflow condition. Note that we have written MAX – 
1 because the index starts from 0. Similarly, before deleting an element from a queue, we must check for 



 

 

underflow conditions. An underflow condition occurs when we try to delete an element from a queue 
that is already empty. If FRONT = –1 and REAR = –1, it means there is no element in the queue. 

 

Algorithm to insert an element in a queue Algorithm to delete an element from a queue 
 
NOTE: The process of inserting an element in the queue is called enqueue, and the process of deleting an 

element from the queue is called dequeue. 
 
3.3 LINKED REPRESENTATION OF QUEUES 
 
We have seen how a queue is created using an array. Although this technique of creating a queue is easy, 

its drawback is that the array must be declared to have some fixed size. If we allocate space for 50 
elements in the queue and it hardly uses 20–25 locations, then half of the space will be wasted. 

 
And in case we allocate less memory locations for a queue that might end up growing large and large, 

then a lot of re-allocations will have to be done, thereby creating a lot of overhead and consuming a lot 
of time. 

 
In case the queue is a very small one or its maximum size is known in advance, then the array 

implementation of the queue gives an efficient implementation. But if the array size cannot be 
determined in advance, the other alternative, i.e., the linked representation is used. The storage 
requirement of linked representation of a queue with n elements is O(n) and the typical time requirement 
for operations is O(1). 

In a linked queue, every element has two parts, one that stores the data and another that stores the address 
of the next element. The START pointer of the linked list is used as FRONT. Here, we will also use 
another pointer called REAR, which will store the address of the last element in the queue. 

 
All insertions will be done at the rear end and all the deletions will be done at the front end. If FRONT = 

REAR = NULL, then it indicates that the queue is empty. The linked representation of a queue is shown 
in Fig. 3.4. 

 

Algorithm to insert an element in a linked queue 
Insert Operation 



 

 

The insert operation is used to insert an element into a queue. The new element is added as the last 
element of the queue. Consider the linked queue shown in Fig. 3.5. 

To insert an element with value 9, we first check if FRONT=NULL. If the condition holds, then the queue 
is empty. So, we allocate memory for a new node, store the value in its data part and NULL in its next 
part. The new node will then be called both FRONT and rear. However, if FRONT != NULL, then we 
will insert the new node at the rear end of the linked queue and name this new node as rear. Thus, the 
updated queue becomes as shown in Fig. 3.6. 

The algorithm shows that inserting an element in a linked queue. In Step 1, the memory is allocated for 
the new node. In Step 2, the DATA part of the new node is initialized with the value to be stored in the 
node. In Step 3, we check if the new node is the first node of the linked queue. This is done by checking 
if FRONT = NULL. If this is the case, then the new node is tagged as FRONT as well as REAR. Also 
NULL is stored in the NEXT part of the node (which is also the FRONT and the REAR node). 
However, if the new node is not the first node in the list, then it is added at the REAR end of the linked 
queue (or the last node of the queue). 

 
Delete Operation 
The delete operation is used to delete the element that is first inserted in a queue, i.e., the element whose 

address is stored in FRONT. However, before deleting the value, we must first check if FRONT=NULL 
because if this is the case, then the queue is empty and no more deletions can be done. If an attempt is 
made to delete a value from a queue that is already empty, an underflow message is printed. Consider the 
queue shown in Fig. 3.7. 

 
 

3.4 APPLICATIONS OF QUEUES 
 
 Queues are widely used as waiting lists for a single shared resource like printer, disk, CPU. 
 Queues are used to transfer data asynchronously (data not necessarily received at same rate as sent) 

between two processes (IO buffers), e.g., pipes, file IO, sockets. 
 Queues are used as buffers on MP3 players and portable CD players, iPod playlist. 
 Queues are used in Playlist for jukebox to add songs to the end, play from the front of the list. 
 Queues are used in operating system for handling interrupts. When programming a real-time system that 

can be interrupted, for example, by a mouse click, it is necessary to process the interrupts immediately, 
before proceeding with the current job. If the interrupts have to be handled in the order of arrival, then a 
FIFO queue is the appropriate data structure. 

 
3.5 TYPES OF QUEUES 
 
A queue data structure can be classified into the following types: 
1. Circular Queue  
2. Deque  
3. Priority Queue  
4. Multiple Queue  
 
3.5.1 Circular Queues 



 

 

 
In linear queues, we have discussed so far that insertions can be done only at one end called the REAR 

and deletions are always done from the other end called the FRONT. Look at the queue shown in Fig. 
3.9. 

 

Here, FRONT = 0 and REAR = 9. 
 
Now, if you want to insert another value, it will not be possible because the queue is completely full. 

There is no empty space where the value can be inserted. Consider a scenario in which two successive 
deletions are made. The queue will then be given as shown in Fig. 3.10. 

 

 
Here, front = 2 and REAR = 9. 
 
Suppose we want to insert a new element in the queue shown in Fig. 3.10. Even though there is space 

available, the overflow condition still exists because the condition rear = MAX – 1 still holds true. This 
is a major drawback of a linear queue. 

 
To resolve this problem, we have two solutions. First, shift the elements to the left so that the vacant space 

can be occupied and utilized efficiently. But this can be very time-consuming, especially when the queue 
is quite large. 

 
The second option is to use a circular queue. In the circular queue, the first index comes right after the last 

index. Conceptually, you can think of a circular queue as shown in Fig. 3.11. 
 
 

 

The circular queue will be full only when front = 0 and rear = Max – 1. A circular queue is implemented 
in the same manner as a linear queue is implemented. The only difference will be in the code that 
performs insertion and deletion operations. 

 
For insertion, we now have to check for the following three conditions: 
 If front = 0 and rear = MAX – 1, then the circular queue is full. Look at the queue given in Fig. 3.12 

which illustrates this point. 
 If rear != MAX – 1, then rear will be incremented and the value will be inserted as illustrated in Fig. 

3.13. 
 If front != 0 and rear = MAX – 1, then it means that the queue is not full. So, set rear = 0 and insert the 

new element there, as shown in Fig. 3.14. 
 



 

 

 
 
Let us look at the algorithm to insert an element in a circular queue. In Step 1, we check for the overflow 

condition. In Step 2, we make two checks. First to see if the queue is empty, and second to see if the 
REAR end has already reached the maximum capacity while there are certain free locations before the 
FRONT end. In Step 3, the value is stored in the queue at the location pointed by REAR. 

 
Let us now discuss how deletions are performed in this case. To delete an element, again we check for 

three conditions. 
 
 Look at Fig. 3.15. If front = –1, then there are no elements in the queue. So, an underflow condition 

will be reported. 
 If the queue is not empty and front = rear, then after deleting the element at the front the queue 

becomes empty and so front and rear are set to –1. This is illustrated in Fig. 3.16. 
 If the queue is not empty and front = MAX–1, then after deleting the element at the front, front is set to 
0. This is shown in Fig. 3.17. 
 
 

 



 

 

 
 

Let us look at the algorithm to delete an element from a circular queue. In Step 1, we check for the 
underflow condition. In Step 2, the value of the queue at the location pointed by FRONT is stored in 
VAL. In Step 3, we make two checks. First to see if the queue has become empty after deletion and 
second to see if FRONT has reached the maximum capacity of the queue. The value of FRONT is then 
updated based on the outcome of these checks. 

 
3.5.2 Deques 
 
A deque (pronounced as ‗deck‘ or ‗dequeue‘) is a list in which the elements can be inserted or deleted at 

either end. It is also known as a head-tail linked list because elements can be added to or removed from 
either the front (head) or the back (tail) end. 

 
However, no element can be added and deleted from the middle. In the computer‘s memory, a deque is 

implemented using either a circular array or a circular doubly linked list. 
 
In a deque, two pointers are maintained, LEFT and RIGHT, which point to either end of the deque. The 

elements in a deque extend from the LEFT end to the RIGHT end and since it is circular, Dequeue[N–1] 
is followed by Dequeue[0]. Consider the deques shown in Fig. 3.18. 

 

 
 
There are two variants of a double-ended queue. They include 
 
 Input restricted deque In this dequeue, insertions can be done only at one of the ends, while deletions 

can be done from both ends. 
 
 Output restricted deque In this dequeue, deletions can be done only at one of the ends, while insertions 

can be done on both ends. 



 

 

 

3.5.3 Priority Queues 
 
A priority queue is a data structure in which each element is assigned a priority. The priority of the 

element will be used to determine the order in which the elements will be processed. The general rules 
of processing the elements of a priority queue are 

 An element with higher priority is processed before an element with a lower priority. 
 Two elements with the same priority are processed on a first-come-first-served (FCFS) basis. 
 
A priority queue can be thought of as a modified queue in which when an element has to be removed from 

the queue, the one with the highest-priority is retrieved first. The priority of the element can be set based 
on various factors. Priority queues are widely used in operating systems to execute the highest priority 
process first. The priority of the process may be set based on the CPU time it requires to get executed 
completely. 

 
Implementation of a Priority Queue 
 
There are two ways to implement a priority queue. We can either use a sorted list to store the elements so 

that when an element has to be taken out, the queue will not have to be searched for the element with the 
highest priority or we can use an unsorted list so that insertions are always done at the end of the list. 

 
Every time when an element has to be removed from the list, the element with the highest priority will be 

searched and removed. While a sorted list takes O(n) time to insert an element in the list, it takes only 
O(1) time to delete an element. On the contrary, an unsorted list will take O(1) time to insert an element 
and O(n) time to delete an element from the list. 

 
Practically, both these techniques are inefficient and usually a blend of these two approaches is adopted 

that takes roughly O(log n) time or less. 
 
3.5.4 Multiple Queues 
 
When we implement a queue using an array, the size of the array must be known in advance. If the queue 

is allocated less space, then frequent overflow conditions will be encountered. 
 
To deal with this problem, the code will have to be modified to reallocate more space for the array. In 

case we allocate a large amount of space for the queue, it will result in sheer wastage of the memory. 
 
Thus, there lies a tradeoff between the frequency of overflows and the space allocated. So a better solution 

to deal with this problem is to have multiple queues or to have more than one queue in the same array of 
sufficient size. Figure 3.19 illustrates this concept. 

 

 



 

 

 

In the figure, an array Queue[n] is used to represent two queues, Queue A and Queue B. The value of n is 
such that the combined size of both the queues will never exceed n. While operating on these queues, it is 
important to note one thing—queue 

 
A will grow from left to right, whereas queue B will grow from right to left at the same time. Extending 

the concept to multiple queues, a queue can also be used to represent n number of queues in the same 
array. That is, if we have a QUEUE[n], then each queue I will be allocated an equal amount of space 
bounded by indices b[i] and e[i]. This is shown in Fig. 3.20. 

 
Applications of Queue  
Queues are an important data structure that follows the First-In-First-Out (FIFO) principle. They are used 

in various applications, including: 
 
Operating Systems: Queues are used in operating systems to manage the scheduling of processes and 

threads. Each process or thread is added to a queue, and the operating system determines which process 
or thread should be executed next based on scheduling algorithms. 

 
Networking: Queues are used in networking to manage the flow of data packets between different devices 

on a network. For example, routers use queues to store packets that are waiting to be transmitted to their 
destination. 

 
Print Spooling: Print jobs that are sent to a printer are stored in a queue until the printer is ready to print 

them. This ensures that the printer can handle multiple print jobs without getting overwhelmed. 
 
Traffic Management: Queues are used in traffic management systems to manage the flow of vehicles at 

intersections, toll booths, and other traffic control points. Vehicles are queued up in lanes and allowed to 
proceed through the control point in a first-come, first-served order. 

 
Call Center Management: Queues are used in call centers to manage the flow of incoming calls. Calls are 

placed in a queue and assigned to available agents based on various routing algorithms. 
 
Event-driven Programming: Queues are used in event-driven programming to manage the flow of events. 

Events are added to a queue, and the program processes them in a first-come, first-served order. 
 
Job Scheduling: Queues are used in job scheduling to manage the order in which tasks are executed. Jobs 

are added to a queue and processed in the order in which they were added. 
 
Breadth-First Search: Queues are used in graph traversal algorithms, such as Breadth-First Search, to keep 

track of nodes that need to be explored. Nodes are added to a queue and explored in the order in which 
they were added. 

 
Overall, queues are a fundamental data structure used in many applications that require the efficient 

management of a collection of data elements. 
 
 
Multiple-choice Questions 
 
1. A line in a grocery store represents a 
(a) Stack (b) Queue 
(c) Linked List (d) Array 
2. In a queue, insertion is done at 
(a) Rear (b) Front 
(c) Back (d) Top 



 

 

3. The function that deletes values 
from a queue is called 

(a) enqueue (b) dequeue 
(c) pop (d) peek 
4. Typical time requirement for 

operations on queues is 
(a) O(1) (b) O(n) 
(c) O(log n) (d) O(n2) 
5. The circular queue will be full only when 
(a) FRONT = MAX –1 and REAR = Max –1 
(b) FRONT = 0 and REAR = Max –1 
(c) FRONT = MAX –1 and REAR = 0 
(d) FRONT = 0 and REAR = 0 
 
Fill in the Blanks 
 
1. New nodes are added at of the queue. 
 
2.   allows insertion of elements at either ends but not in the middle. 
 
3. The typical time requirement for operations in a linked queue is . 
 
4. In , insertions can be done only at one end, while deletions can be done from both the ends. 
 
5. Dequeue is implemented using . 
 
6.    are appropriate data structures to process batch computer programs submitted to the 

computer centre. 
 
7.    are appropriate data structures to process a list of employees having a contract for a 

seniority system for hiring and firing. 
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4.1 INTRODUCTION  

Stack is an important data structure which stores its elements in an ordered manner. We will explain the 
concept of stacks using an analogy. You must have seen a pile of plates where one plate is placed on top 
of another as shown in Fig. 3.21. 

 
Now, when you want to remove a plate, you remove the topmost plate first. Hence, you can add and 

remove an element (i.e., a plate) only at/from one position which is the topmost position. 

A stack is a linear data structure which uses the same principle, i.e., the elements in a stack are added and 
removed only from one end, which is called the TOP. 

 
Hence, a stack is called a LIFO (Last-In-First-Out) data structure, as the element that was inserted last is 

the first one to be taken out. 
 
4.2 ARRAY REPRESENTATION OF STACKS 
 
In the computer‘s memory, stacks can be represented as a linear array. Every stack has a variable called 

TOP associated with it, which is used to store the address of the topmost element of the stack. It is this 
position where the element will be added to or deleted from. 

 
There is another variable called MAX, which is used to store the maximum number of elements that the 

stack can hold. If TOP = NULL, then it indicates that the stack is empty and if TOP = MAX–1, then the 
stack is full. (You must be wondering why we have written MAX–1. It is because array indices start 
from 0.) Look at Fig. 3.22. 

 
 

4.3 OPERATIONS ON A STACK 
 
A stack supports three basic operations: push, pop, and peek. 
 
The push operation adds an element to the top of the stack and the pop operation removes the element 

from the top of the stack. The peek operation returns the value of the topmost element of the stack. 
 
  



 

 

Push Operation 
 
 The push operation is used to insert an element into the stack. 
 The new element is added at the topmost position of the stack. 
 To insert an element with value 6, we first check if TOP=MAX–1. 
 If the condition is false, then we increment the value of TOP and store the new 

element at the position given by stack[TOP]. 
 

 
 
 

 

 

Pop Operation 
 
 The pop operation is used to delete the topmost element from the stack. 
 However, before deleting the value, we must first check if TOP=NULL because if that is the 

case, then it means the stack is empty and no more deletions can be done. 
 To delete the topmost element, we first check if TOP=NULL. If the condition is false, 

then we decrement the value pointed by TOP. 
 

 
 



 

 

Peek Operation 
 
 Peek is an operation that returns the value of the topmost element of the stack without deleting 

it from the stack. 
 However, the Peek operation first checks if the stack is empty, i.e., if TOP = NULL, 

then an appropriate message is printed, else the value is returned. 
 Here, the Peek operation will return 5,as it is the value of the topmost element of the stack. 
 

 
Example: 

 

 
 
4.4 LINKED REPRESENTATION OF STACKS 
 
We have seen how a stack is created using an array. This technique of creating a stack is easy, but the 

drawback is that the array must be declared to have some fixed size. In case the stack is a very small one 
or its maximum size is known in advance, then the array implementation of the stack gives an efficient 
implementation. But if the array size cannot be determined in advance, then the other alternative, i.e., 
linked representation, is used. 

The storage requirement of linked representation of the stack with n elements is O(n), and the typical time 
requirement for the operations is O(1). 

 
In a linked stack, every node has two parts—one that stores data and another that stores the address of the 

next node. The START pointer of the linked list is used as TOP. All insertions and deletions are done at 
the node pointed by TOP. If TOP = NULL, then it indicates that the stack is empty. The linked 
representation of a stack is shown in below figure. 

 



 

 

The algorithm to delete an element from a stack. 
 

In Step 1, we first check for the UNDERFLOW condition. 
In Step 2, we use a pointer PTR that points to TOP. 
In Step 3, TOP is made to point to the next node in sequence. 
In Step 4, the memory occupied by PTR is given back to the free 
pool. 

Push Operation 
 
The push operation is used to insert an element into the stack. The new element is added at the 

topmost position of the stack. Consider the linked stack shown in below figure. 

To insert an element with value 9, we first check if TOP=NULL. If this is the case, then we allocate 
memory for a new node, store the value in its DATA part and NULL in its NEXT part. The new node 
will then be called TOP. However, if TOP!=NULL, then we insert the new node at the beginning of the 
linked stack and name this new node as TOP. 

 
the algorithm to push an element into a linked stack. In Step 1, memory is allocated for the new node. In 

Step 2, the DATA part of the new node is initialized with the value to be stored in the node. In Step 3, 
we check if the new node is the first node of the linked list. is done by checking if TOP = NULL. In 
case the IF statement evaluates to true, then NULL is stored in the NEXT part of the node and the new 
node is called TOP. However, if the new node is not the first node in the list, then it is added before the 
first node of the list (that is, the TOP node) and termed as TOP. 

Pop Operation 
 
The pop operation is used to delete the topmost element from a stack. However, before deleting the value, 

we must first check if TOP=NULL, because if this is the case, then it means that the stack is empty and 
no more deletions can be done. If an attempt is made to delete a value from a stack that is already empty, 
an UNDERFLOW message is printed. Consider the stack shown in below figure. 

In case TOP!=NULL, then we will delete the node pointed by TOP, and make TOP point to the second 
element of the linked stack. Thus, the updated stack becomes as shown in below figure. 

 



 

 

4.5 APPLICATIONS OF STACKS 
 
In this section we will discuss typical problems where stacks can be easily applied for a simple and efficient 

solution. The topics that will be discussed in this section include the following: 
Reversing a list 
Parentheses checker 
Conversion of an infix expression into a postfix expression 
Evaluation of a postfix expression 
Conversion of an infix expression into a prefix expression 
Evaluation of a prefix expression 
Recursion 
Tower of Hanoi 

4.6 REVERSING LIST 
 
A list of numbers can be reversed by reading each number from an array starting from the first index and 

pushing it on a stack. Once all the numbers have been read, the numbers can be popped one at a time 
and then stored in the array starting from the first index. 

 

4.7 EVALUATION OF ARITHMETIC EXPRESSIONS  

Polish Notations: 

Infix, postfix, and prefix notations are three different but equivalent notations of writing algebraic 
expressions. But before learning about prefix and postfix notations, let us first see what an infix notation 
is. We all are familiar with the infix notation of writing algebraic expressions. 

 
While writing an arithmetic expression using infix notation, the operator is placed in between the 

operands. For example, A+B; here, plus operator is placed between the two operands A and B. Although 
it is easy for us to write expressions using infix notation, computers find it difficult to parse as the 
computer needs a lot of information to evaluate the expression. Information is needed about operator 
precedence and associativity rules, and brackets which override these rules. 

So, computers work more efficiently with expressions written using prefix and postfix notations. Postfix 
notation was developed by Jan Łukasiewicz who was a Polish logician, mathematician, and philosopher. 
His aim was to develop a parenthesis-free prefix notation (also known as Polish notation) and a postfix 
notation, which is better known as Reverse Polish Notation or RPN. 



 

 

 

In postfix notation, as the name suggests, the operator is placed after the operands. For example, if an 
expression is written as A+B in infix notation, the same expression can be written as AB+ in postfix 
notation. The order of evaluation of a postfix expression is always from left to right. Even brackets 
cannot alter the order of evaluation. 

 
The expression (A + B) * C can be written as: 
[AB+]*C 
AB+C* in the postfix notation 
 
A postfix operation does not even follow the rules of operator precedence. The operator which occurs first 

in the expression is operated first on the operands. 
 
For example, given a postfix notation AB+C*. While evaluation, addition will be performed prior to 

multiplication. Thus we see that in a postfix notation, operators are applied to the operands that are 
immediately left to them. In the example, AB+C*, + is applied on A and B, then * is applied on the 
result of addition and C. 

 
Conversion of an Infix Expression into a Postfix Expression: 
 
Let I be an algebraic expression written in infix notation. I may contain parentheses, operands, and 

operators. For simplicity of the algorithm we will use only +, –, *, /, % operators. 
 
The precedence of these operators can be given as follows: 
 Higher priority *, /, % 
 Lower priority +, – 
 
No doubt, the order of evaluation of these operators can be changed by making use of parentheses. For 

example, if we have an expression A + B * C, then first B * C will be done and the result will be added 
to A. But the same expression if written as, (A + B) * C, will evaluate A + B first and then the result will 
be multiplied with C. 

 
Example: Convert the following infix expressions into postfix expressions. 
Solution: 
(a) (A–B) * (C+D) 
[AB–] * [CD+] 
AB–CD+* 
 
(b) (A + B) / (C + 

D) – (D * E) 
[AB+] / [CD+] – 
[DE*] 
[AB+CD+/] – 
[DE*] 
AB+CD+/DE*– 



 

 

The algorithm given below transforms an infix expression into postfix expression. The algorithm accepts 
an infix expression that may contain operators, operands, and parentheses. 

For simplicity, we assume that the infix operation contains only modulus (%), multiplication (*), division 
(/), addition (+), and subtraction (―) operators and that operators with same precedence are performed 

from left- to-right. 
The algorithm uses a stack to temporarily hold operators. The postfix expression is obtained from left-to-

right using the operands from the infix expression and the operators which are removed from the stack. 
The first step in this algorithm is to push a left parenthesis on the stack and to add a corresponding right 
parenthesis at the end of the infix expression. The algorithm is repeated until the stack is empty. 

Example: Convert the following infix expression into postfix expression using the 
algorithm A – (B / C + (D % E * F) / G)* H 

A – (B / C + (D % E * F) / G)* H) 
 



 

 

Evaluation of a Postfix Expression: 
 
The ease of evaluation acts as the driving force for computers to translate an infix notation into a postfix 

notation. That is, given an algebraic expression written in infix notation, the computer first converts the 
expression into the equivalent postfix notation and then evaluates the postfix expression. 

 
Both these tasks—converting the infix notation into postfix notation and evaluating the postfix 

expression— make extensive use of stacks as the primary tool. 
 
Using stacks, any postfix expression can be evaluated very easily. Every character of the postfix 

expression is scanned from left to right. If the character encountered is an operand, it is pushed on to the 
stack. However, if an operator is encountered, then the top two values are popped from the stack and the 
operator is applied on these values. The result is then pushed on to the stack. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm to evaluate a postfix expression Evaluation of a 

postfix expression Let us now take an example that makes use of this algorithm. 
Consider the infix expression given as 9 – ((3 * 4) + 8) / 4. Evaluate the expression. 
The infix expression 9 – ((3 * 4) + 8) / 4 can be written as 9 3 4 * 8 + 4 / – using postfix notation. 
 
Factorial Calculation: 
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5.1 BASIC TERMINOLOGY IN TREES 
 
A tree is recursively defined as a set of one or more nodes where one node is designated as the root of the 

tree and all the remaining nodes can be partitioned into non-empty sets each of which is a sub-tree of the 
root. 

Figure 4.1 shows a tree where node A is the root node; nodes B, C, and D are children of the root node 
and form sub-trees of the tree rooted at node A. 

Root node The root node R is the topmost node in the tree. If R = NULL, then it means the tree is 

empty. Sub-trees If the root node R is not NULL, then the trees T1, T2, and T3 are called the sub-

trees of R. Leaf node A node that has no children is called the leaf node or the terminal node. 

Path A sequence of consecutive edges is called a path. For example, in Fig. 9.1, the path from the root 
node A to node I is given as: A, D, and I. 

 
Ancestor node An ancestor of a node is any predecessor node on the path from root to that node. The 

root node does not have any ancestors. In the tree given in Fig. 9.1, nodes A, C, and G are the ancestors of 
node K. 

 
Descendant node A descendant node is any successor node on any path from the node to a leaf node. 

Leaf nodes do not have any descendants. In the tree given in Fig. 9.1, nodes C, G, J, and K are the 
descendants of node A. 

 
Level number Every node in the tree is assigned a level number in such a way that the root node is at 

level 0, children of the root node are at level number 1. Thus, every node is at one level higher than its 
parent. So, all child nodes have a level number given by parent‘s level number + 1. 

 
Degree Degree of a node is equal to the number of children that a node has. The degree of a leaf node is 

zero. 
 In-degree In-degree of a node is the number of edges arriving at that node. 
 Out-degree Out-degree of a node is the number of edges leaving that node. 
 
 

5.2 BINARY TREES 
 
A binary tree is a data structure that is defined as a collection of elements called nodes. In a binary tree, 

the topmost element is called the root node, and each node has 0, 1, or at the most 2 children. 
 
A node that has zero children is called a leaf node or a terminal node. Every node contains a data element, 

a left pointer which points to the left child, and a right pointer which points to the right child. The root 
element is pointed by a 'root' pointer. If root = NULL, then it means the tree is empty. 

 



 

 

Figure 4.2 shows a binary tree. In the figure, R is the root node and the two trees T1 and T2 are called the 
left and right sub-trees of R. T1 is said to be the left successor of R. Likewise, T2 is called the right 
successor of R. 

Note that the left sub-tree of the root node consists of the nodes: 2, 4, 5, 8, and 9. Similarly, the right sub-
tree of the root node consists of nodes: 3, 6, 7, 10, 11, and 12. 

 
In the tree, root node 1 has two successors: 2 and 3. Node 2 has two successor nodes: 4 and 5. Node 4 has 

two successors: 8 and 9. Node 5 has no successor. Node 3 has two successor nodes: 6 and 7. Node 
6 has two 

successors: 10 and 11. Finally, node 7 has only one successor: 12. 
 
A binary tree is recursive by definition as every node in the tree contains a left sub-tree and a right sub-

tree. Even the terminal nodes contain an empty left sub-tree and an empty right sub-tree. 
Look at Fig. 4.2, nodes 5, 8, 9, 10, 11, and 12 have no successors and thus said to have empty sub-trees. 
 
Terminology: 
 
Parent If N is any node in T that has left successor S1 and right successor S2, then N is called the parent 

of S1 and S2. Correspondingly, S1 and S2 are called the left child and the right child of N. Every node 
other than the root node has a parent. 

 
 

Level number Every node in the binary tree is assigned a level number (refer Fig. 4.3). The root node is 
defined to be at level 0. The left and the right child of the root node have a level number 1. Similarly, 
every node is at one level higher than its parents. So all child nodes are defined to have level number as 
parent's level number + 1. 

 
Degree of a node It is equal to the number of children that a node has. The degree of a leaf node is zero. 

For example, in the tree, degree of node 4 is 2, degree of node 5 is zero and degree of node 7 is 1. 
 
Sibling All nodes that are at the same level and share the same parent are called siblings (brothers). For 

example, nodes 2 and 3; nodes 4 and 5; nodes 6 and 7; nodes 8 and 9; and nodes 10 and 11 are siblings. 
 
Leaf node A node that has no children is called a leaf node or a terminal node. The leaf nodes in the tree 

are: 8, 9, 5, 10, 11, and 12. 



 

 

Note that in Fig. 4.6, level 0 has 20 = 1 node, level 1 has 21 = 2 
nodes, level 2 has 22 = 4 nodes, level 3 has 6 nodes which is 
less than the maximum of 23 = 8 nodes. 

 
In Fig. 4.6, tree T13 has exactly 13 nodes. They have been 
purposely labelled from 1 to 13, so that it is easy for the 
reader to find the parent node, the right child node, and the 
left child node of the given node. 

 
Similar binary trees Two binary trees T and T‘ are said to be similar if both these trees have the same 

structure. Figure 4.4 shows two similar binary trees. 
 

 
Copies Two binary trees T and T‘ are said to be copies if they have similar structure and if they have 

same content at the corresponding nodes. Figure 4.5 shows that T‘ is a copy of T. 
 
Edge It is the line connecting a node N to any of its successors. A binary tree of n nodes has exactly n – 1 

edges because every node except the root node is connected to its parent via an edge. 
 
Path A sequence of consecutive edges. For example, in Fig. 4.3, the path from the root node to the node 8 

is given as: 1, 2, 4, and 8. 
 
Depth The depth of a node N is given as the length of the path from the root R to the node N. The depth 

of the root node is zero. 
 
Height of a tree It is the total number of nodes on the path from the root node to the deepest node in the 

tree. A tree with only a root node has a height of 1. 
 
A binary tree of height h has at least h nodes and at most 2h – 1 nodes. This is because every level will 

have at least one node and can have at most 2 nodes. So, if every level has two nodes then a tree with 
height h will have at the most 2h – 1 nodes as at level 0, there is only one element called the root. The 
height of a binary tree with n nodes is at least log2(n+1) and at most n. 

 

In-degree/out-degree of a node It is the number of edges arriving at a node. The root node is the only 
node that has an in-degree equal to zero. Similarly, out-degree of a node is the number of edges leaving 
that node. 

Binary trees are commonly used to implement binary search trees, expression trees, tournament trees, 
and binary heaps. 

 
Complete Binary Trees 
 
A complete binary tree is a binary tree that satisfies two properties. First, in a complete binary tree, 

every level, except possibly the last, is completely filled. Second, all nodes appear as far left as possible. 
In a complete binary tree Tn, there are exactly n nodes and level r of T can have at most 2r nodes. Figure 

9.7 shows a complete binary tree. 



 

 

 
The formula can be given as—if K is a parent node, then its left child can be calculated as 2 × K and its 

right child can be calculated as 2 × K + 1. 
For example, the children of the node 4 are 8 (2 × 4) and 9 (2 

× 4 + 1). Similarly, the parent of the node K can be 
calculated as | K/2 |. 

Given the node 4, its parent can be calculated as | 4/2 | = 2. The height of a tree Tn having exactly n 
nodes is given as: Hn = | log2 (n + 1) | 

 
NOTE: This means, if a tree T has 10,00,000 nodes, then its height is 21 
 
Extended Binary Trees 
A binary tree T is said to be an extended binary tree (or a 2-tree) if each node in the tree has either no 

child or exactly two children. Figure 4.7 shows how an ordinary binary tree is converted into an extended 
binary tree. In an extended binary tree, nodes having two children are called internal nodes and nodes 
having no children are called external nodes. In Fig. 4.7, the internal nodes are represented using 
circles and the external nodes are represented using squares. 

To convert a binary tree into an extended tree, every empty sub-tree is replaced by a new node. The 
original nodes in the tree are the internal nodes, and the new nodes added are called the external nodes. 

 
 

5.3 REPRESENTATION OF BINARY TREES IN THE MEMORY 
 
In the computer‘s memory, a binary tree can be maintained either by using a linked representation or by 

using a sequential representation. 
 
Linked representation of binary trees In the linked representation of a binary tree, every node will 

have three parts: the data element, a pointer to the left node, and a pointer to the right node. 
So in C, the binary tree is built with a node type 

given below. struct node 
{ 
struct node *left; int data; 
struct node *right; 
}; 
 

Every binary tree has a pointer ROOT, which points to the root element (topmost element) of the tree. If 
ROOT = NULL, then the tree is empty. Consider the binary tree given in Fig. 4.2. The schematic 
diagram of the linked representation of the binary tree is shown in Fig. 4.8. 

 
In Fig. 4.8, the left position is used to point to the left child of the node or to store the address of the left 

child of the node. The middle position is used to store the data. Finally, the right position is used to point 
to the right child of the node or to store the address of the right child of the node. Empty sub-trees are 
represented using X (meaning NULL). 



 

 

 

 
Sequential representation of binary trees Sequential representation of trees is done using single or one- 

dimensional arrays. Though it is the simplest technique for memory representation, it is inefficient as it 
requires a lot of memory space. 

 
A sequential binary tree follows the following rules: 
 A one-dimensional array, called TREE, is used to store the elements of tree. 
 The root of the tree will be stored in the first location. That is, TREE[1] will store the data of 

the root element. 
 The children of a node stored in location K will be stored in locations (2 × K) and (2 × K+1). 
 The maximum size of the array TREE is given as (2h–1), where h is the height of the tree. 
 An empty tree or sub-tree is specified using NULL. If TREE[1] = NULL, then the tree is 

empty. Figure 4.9 shows a binary tree and its corresponding sequential representation. The tree has 11 
nodes and its height is 4. 

 
 

 
 

5.4 TRAVERSING A BINARY TREE 
 
Traversing a binary tree is the process of visiting each node in the tree exactly once in a systematic way. 

Unlike linear data structures in which the elements are traversed sequentially, tree is a nonlinear data 
structure in which the elements can be traversed in many different ways. There are different algorithms 
for tree traversals. These algorithms differ in the order in which the nodes are visited. In this section, we 
will discuss these algorithms. 

 
Pre-order Traversal 
 
To traverse a non-empty binary tree in pre-order, the following operations are performed recursively at each 

node. The algorithm works by: 



 

 

1. Visiting the root node, 
2. Traversing the left sub-tree, and finally 
3. Traversing the right sub-tree. 
 
Pre-order traversal is also called as depth-first traversal. In this algorithm, the left sub-tree is always 

traversed before the right sub-tree. The word ‗pre‘ in the pre-order specifies that the root node is 
accessed prior to any other nodes in the left and right sub-trees. Pre-order algorithm is also known as the 
NLR traversal algorithm (Node-Left-Right). 

 

 

In-order Traversal 
 
To traverse a non-empty binary tree in in-order, the following operations are performed recursively at 

each node. The algorithm works by: 
1. Traversing the left sub-tree, 
2. Visiting the root node, and finally 
3. Traversing the right sub-tree. 
 

 
 

 
 
 

In-order traversal is also called as symmetric 
traversal. In this algorithm, the left sub-tree is 
always traversed before the root node and the right 
sub-tree. 

 
The word ‗in‘ in the in-order specifies that the root 
node is accessed in between the left and the right 
sub-trees. In-order algorithm is also known as the 
LNR traversal algorithm (Left-Node-Right). 



 

 

Post-order Traversal 
 
To traverse a non-empty binary tree in post-order, the following operations are performed recursively at 

each node. The algorithm works by: 
1. Traversing the left sub-tree, 
2. Traversing the right sub-tree, and finally 
3. Visiting the root node. 
 
In this algorithm, the left sub-tree is always traversed before the right sub-tree and the root node. The 

word ‗post‘ in the post-order specifies that the root node is accessed after the left and the right sub-
trees. 

Post-order algorithm is also known as the LRN traversal algorithm (Left-Right-Node). 
 

 
 
 

 
 

5.5 BINARY SEARCH TREES 
 
A binary search tree, also known as an ordered binary tree, is a variant of binary trees in which the nodes 

are arranged in an order. In a binary search tree, all the nodes in the left sub-tree have a value less than 
that of the root node. Correspondingly, all the nodes in the right sub-tree have a value either equal to or 
greater than the root node. The same rule is applicable to every sub-tree in the tree. (Note that a binary 
search tree may or may not contain duplicate values, depending on its implementation.) 



 

 

The root node is 39. The left sub-tree of the root node 
consists of nodes 9, 10, 18, 19, 21, 27, 28, 29, and 36. 

 
All these nodes have smaller values than the root node. The 
right sub-tree of the root node consists of nodes 40, 45, 54, 
59, 60, and 65. 

 
Recursively, each of the sub-trees also obeys the binary 
search tree constraint. 

 
For example, in the left sub-tree of the root node, 27 is the 
root and all elements in its left sub-tree (9, 10, 18, 19, 21) are 
smaller than 27, while all nodes in its right sub-tree (28, 29, 
and 36) are greater than the root node‘s value. 

 
Binary search trees also speed up the insertion and deletion operations. The tree has a speed advantage 

when the data in the structure changes rapidly. 
Binary search trees are considered to be efficient data structures especially when compared with sorted 

linear arrays and linked lists. In a sorted array, searching can be done in O(log2n) time, but insertions 
and deletions are quite expensive. In contrast, inserting and deleting elements in a linked list is easier, 
but searching for an element is done in O(n) time. 

However, in the worst case, a binary search tree will take O(n) time to search for an 

element. To summarize, a binary search tree is a binary tree with the following 

properties: 

The left sub-tree of a node N contains values that are less than N‘s value. 
The right sub-tree of a node N contains values that are greater than N‘s value. 
Both the left and the right binary trees also satisfy these properties and, thus, are binary search trees. 
 
 

Example: 
 
Create a binary search tree using the following data elements: 45, 39, 56, 12, 34, 78, 32, 10, 89, 54, 67, and 

81. 
 

 
 



 

 

 
 

5.6 OPERATIONS ON BINARY SEARCH TREES  

Inserting a New Node in a Binary Search Tree 

The insert function is used to add a new node with a given value at the correct position in the binary 
search tree. Adding the node at the correct position means that the new node should not violate the 
properties of the binary search tree. The initial code for the insert function is similar to the search 
function. This is because we first find the correct position where the insertion has to be done and then add 
the node at that position. The insertion function changes the structure of the tree. Therefore, when the 
insert function is called recursively, the function should return the new tree pointer. 
The insert function requires time proportional to the height of the tree in the worst case. It takes O(log n) 
time to execute in the average case and O(n) time in the worst case. 

 

Example: Inserting nodes with values 12 and 55 in the given binary search tree 

 

 

 

 



 

 

If we have to delete node 78, we can simply 
remove this node without any issue. 
This is the simplest case of deletion. 

 

Deleting a Node from a Binary Search Tree 
 
The delete function deletes a node from the binary search tree. However, utmost care should be taken that 

the properties of the binary search tree are not violated and nodes are not lost in the process. 
Case 1: Deleting a Node that has 

No Children Case 2: Deleting a 
Node with One Child 

Case 3: Deleting a Node with Two Children 
 

Case1: Deleting a Node that has No Children 

 

 
Case 2: Deleting a Node with One Child 

To handle this case, the node‘s child is set as the 
child of the node‘s parent. In other words, replace the 
node with its child. Now, if the node is the left child 
of its parent, the node‘s child becomes the left child 
of the node‘s parent. Correspondingly, if the node is 
the right child of its parent, the node‘s child becomes 
the right child of the node‘s parent. 

 
Look at the binary search tree shown in figure and 
see how deletion of node 54 is handled. 

To handle this case, replace the node‘s value 
with its in-order predecessor (largest value in the 
left sub-tree) or in-order successor (smallest 
value in the right sub-tree). 
The in-order predecessor or the successor can 
then be deleted using any of the above cases. 

 
Look at the binary search tree given in figure and 
see how deletion of node with value 56 is 
handled. 



 

 

 

5.7 BALANCED BINARY TREES- AVL TREES 
 
AVL tree is a self-balancing binary search tree invented by G.M. Adelson-Velsky and E.M. Landis in 

1962. The tree is named AVL in honour of its inventors. In an AVL tree, the heights of the two sub-trees 
of a node may differ by at most one. Due to this property, the AVL tree is also known as a height-
balanced tree. The key advantage of using an AVL tree is that it takes O(log n) time to perform search, 
insert, and delete operations in an average case as well as the worst case because the height of the tree is 
limited to O(log n). 

 
The structure of an AVL tree is the same as that of a binary search tree but with a little difference. In its 

structure, it stores an additional variable called the Balance Factor. Thus, every node has a balance factor 
associated with it. The balance factor of a node is calculated by subtracting the height of its right sub-
tree from the height of its left sub-tree. A binary search tree in which every node has a balance factor 
of –1, 0, or 1 is said to be height balanced. A node with any other balance factor is considered to be 
unbalanced and requires rebalancing of the tree. 

 
Balance factor = Height (left sub-tree) – Height (right sub-tree) 
 
 If the balance factor of a node is 1, then it means that the left sub-tree of the tree is one level higher 

than that of the right sub-tree. Such a tree is therefore called as a left-heavy tree. 
 If the balance factor of a node is 0, then it means that the height of the left sub-tree (longest path in the 

left sub-tree) is equal to the height of the right sub-tree. 
 If the balance factor of a node is –1, then it means that the left sub-tree of the tree is one level lower 

than that of the right sub-tree. Such a tree is therefore called as a right-heavy tree. 
 
5.7.1 Operations on AVL Trees  

Searching for a Node in an AVL Tree 

Searching in an AVL tree is performed exactly the same way as it is performed in a binary search tree. 
Due to the height-balancing of the tree, the search operation takes O (log n) time to complete. Since 
the operation does not modify the structure of the tree, no special provisions are required. 

 
Inserting a New Node in an AVL Tree 
 
Insertion in an AVL tree is also done in the same way as it is done in a binary search tree. In the AVL 

tree, the new node is always inserted as the leaf node. But the step of insertion is usually followed by an 
additional step of rotation. Rotation is done to restore the balance of the tree. 

 
However, if insertion of the new node does not disturb the balance factor, that is, if the balance factor of 

every node is still –1, 0, or 1, then rotations are not required. 
 



 

 

To perform rotation, our first task is to find the critical node. Critical node is the nearest ancestor node on 
the path from the inserted node to the root whose balance factor is neither –1, 0, nor 1. 

 
The second task in rebalancing the tree is to determine which type of rotation has to be done. There are 

four types of rebalancing rotations and application of these rotations depends on the position of the 
inserted node with reference to the critical node. 

 

The four categories of rotations are: 
 LL rotation: The new node is inserted in the left sub-tree of the left sub-tree of the critical node. 
 RR rotation: The new node is inserted in the right sub-tree of the right sub-tree of the critical 

node. 
 LR rotation: The new node is inserted in the right sub-tree of the left sub-tree of the critical 

node. 
 RL rotation: The new node is inserted in the left sub-tree of the right sub-tree of the critical 

node. 
 
LL Rotation 

 
RR Rotation 

 
LR and RL Rotations 



 

 

 

 
 
 

Example: Construct an AVL tree by inserting the following elements in the given order. 
63, 9, 19, 27, 18, 108, 99, 81. 

 
 
 
 



 

 

Binary trees are widely used to store algebraic expressions. 
For example, consider the algebraic expression given as: 

 
Exp = (a – b) + (c * d) 

 
This expression can be represented using a binary tree as 
shown in Figure. 

Deleting a Node from an AVL Tree 
 
Deletion of a node in an AVL tree is similar to that of binary search trees. But it goes one step ahead. 

Deletion may disturb the AVLness of the tree, so to rebalance the AVL tree, we need to perform 
rotations. 

 

5.8 APPLICATIONS OF TREES 
 
 Trees are used to store simple as well as complex data. Here simple means an integer value, character 

value and complex data means a structure or a record. 
 Trees are often used for implementing other types of data structures like hash tables, sets, and maps. 
 A self-balancing tree, Red-black tree is used in kernel scheduling, to preempt massively 

multiprocessor computer operating system use. 
 Another variation of tree, B-trees are prominently used to store tree structures on disc. They are used 

to index a large number of records. 
 B-trees are also used for secondary indexes in databases, where the index facilitates a select operation 

to answer some range criteria. 
 Trees are an important data structure used for compiler construction. 
 Trees are also used in database design. 
 Trees are used in file system directories. 
 Trees are also widely used for information storage and retrieval in symbol tables. 
 

5.8.1 Expression Trees 
 

 

Given an expression, Exp = ((a + b) – (c * d)) % ((e ^f) / (g – h)), construct the corresponding binary tree. 
 

5.8.2 Heap Sort 
 
Heap: Recall that a heap is a complete binary tree such that the weight of every node is less than the 

weights of its children 
 
A heap with n elements can be conveniently represented as the first n elements of an array. Furthermore, the 

children of a[i] can be found in a[2i] (left child) and a[2i + 1] (right child) 



 

 

 

Steps: 
 
1. Consider the values of the elements as priorities and build the heap tree. 
2. Start deleteMin operations, storing each deleted element at the end of the heap array. 
 
After performing step 2, the order of the elements will be opposite to the order in the heap tree. 
Hence, if we want the elements to be sorted in ascending order, we need to build the heap tree in descending 

order - the greatest element will have the highest priority. 
 
Note that we use only one array, treating its parts differently: 
 
a. When building the heap tree, part of the array will be considered as the heap, and the rest 

part - the original array. 

b. When sorting, part of the array will be the heap, and the rest part - the sorted array. 
 
Example: 
 
Given an array of 6 elements: 15, 19, 10, 7, 17, and 16 sort it in ascending order using heap sort 
 
Here is the array: 15, 19, 10, 7, 17, and 6 
 
Building the heap tree: 
 
The array represented as a tree, complete but not ordered: 
 

 
 
Start with the rightmost node at height 1, the node at position 3 = 

Size/2. It has one greater child and has to be percolated down: 

 



 

 

 

After processing array [3] the situation is: 
 

 
Next come array [2]. Its children are smaller, so no percolation is needed. 
 
The last node to be processed is array [1]. Its left child is the greater of the 

children. The item at array [1] has to be percolated down to the left, swapped 

with array [2]. As a result the situation is: 

 
 
 
 
 
The children of array [2] are greater, and item 15 has to be moved down further, swapped with array [5]. 

 
Now the tree is ordered, and the binary 

heap is built. Sorting - performing 

deleteMax operations: Delete the top 

element 19. 

Store 19 in a temporary place, a hole is created at the top 

 



 

 

 

Swap 19 with the last element of the heap. 
 
As 10 will be adjusted in the heap, its cell will no longer be a part 

of the heap. Instead it becomes a cell from the sorted array 

 
 

Percolate down the hole 

 
 
 
Percolate once more (10 is less that 15, so it cannot be inserted in the previous hole) 

 

Now 10 can be inserted in the hole 

 



 

 

 

Delete Max the top element 17 
 
Store 17 in a temporary place, a hole is created at the top 
 

Swap 17 with the last element of the heap. 
 
As 10 will be adjusted in the heap, its cell will no longer be a part 

of the heap. Instead it becomes a cell from the sorted array 

The element 10 is less than the children of the hole, and we percolate the hole down: 

 
Insert 10 in the hole 
 



 

 

 

DeleteMax 16 
Store 16 in a temporary place, a hole is created at the top 

Swap 16 with the last element of the heap. 
 
As 7 will be adjusted in the heap, its cell will no longer be a part of the 

heap. Instead it becomes a cell from the sorted array 

Percolate the hole down (7 cannot be inserted there - it is less than the children of the hole) 
 
 
 
 
 
 
Insert 7 in the hole 

 
DeleteMax the top element 15 
Store 15 in a temporary location, a hole is created. 

 
Swap 15 with the last element of the heap. 



  

  

 

As 10 will be adjusted in the heap, its cell will no longer be a part of 
the heap. Instead it becomes a position from the sorted array 

 
Store 10 in the hole (10 is greater than the children of the hole) 

 
DeleteMax the top element 10 
Remove 10 from the heap and store it into a temporary location. 

 
Swap 10 with the last element of the heap. 
As 7 will be adjusted in the heap, its cell will no longer be a part of the heap. Instead it becomes a cell 

from the sorted array 

 
Store 7 in the hole (as the only remaining element in the heap 

 
7 is the last element from the heap, so now the array is sorted 

 
The HEAPSORT procedure takes time O(n log n), since the call to BUILD_HEAP takes time O(n) and 

each of the n -1 calls to Heapify takes time O(log n). 
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In a directed graph, edges form an ordered pair. If there is 
an edge from A to B, then there is a path from A to B but 
not from B to A. 
The edge (A, B) is said to initiate from node A (also 
known as initial node) and terminate at node B (terminal 
node). 
A graph G with V(G) = {A, B, C, D and E} and 
E(G) = {(A, B), (C, B), (A, D), (B, D), (D, E), (E, C)}. 

 
 
6.1 BASIC CONCEPTS 
 
A graph is an abstract data structure that is used to implement the mathematical concept of graphs. It is 

basically a collection of vertices (also called nodes) and edges that connect these vertices. 
 
Definition 
A graph G is defined as an ordered set (V, E), where V(G) represents the set of vertices and E(G) 

represents the edges that connect these vertices. 
 
 
 
 
 
 
 
 
 
 
 

6.1.1 Graph Terminology 
 
Adjacent nodes or neighbours For every edge, e = (u, v) that connects nodes u and v, the nodes u and v 

are the end-points and are said to be the adjacent nodes or neighbours. 
 
Degree of a node Degree of a node u, deg(u), is the total number of edges containing the node u. If 

deg(u) = 0, it means that u does not belong to any edge and such a node is known as an isolated node. 
 
Regular graph It is a graph where each vertex has the same number of neighbours. That is, every node 

has the same degree. A regular graph with vertices of degree k is called a k–regular graph or a regular 
graph of degree k. 

 
Path A path P written as P = {v0, v1, v2, ..., vn), of length n from a node u to v is defined as a 

sequence of (n+1) nodes. Here, u = v0, v = vn and vi–1 is adjacent to vi for i = 1, 2, 3,..., n. 

A graph can be directed or undirected. In an undirected 
graph, edges do not have any direction associated with 
them. 
That is, if an edge is drawn between nodes A and B, then 
the nodes can be traversed from A to B as well as from B 
to A. 
A graph G with V(G) = {A, B, C, D and E} and 
E(G) = {(A, B), (B, C), (A, D), (B, D), (D, E), (C, E)}. 



  

  

A bi-connected undirected graph is a connected graph 
that cannot be broken into disconnected pieces by 
deleting any single vertex. 

 
In a bi-connected directed graph, for any two vertices 
v and w, there are two directed paths from v to w 
which have no vertices in common other than v and w. 

 
Note that the graph shown in Fig. (a) is not a bi- 
connected graph, as deleting vertex C from the graph 
results in two disconnected components of the original 
graph (Fig. (b)). 

Closed path A path P is known as a closed path if the edge has the same end-points. That is, if v0 = vn. 
 
Simple path A path P is known as a simple path if all the nodes in the path are distinct with an exception 

that v0 may be equal to vn. If v0 = vn, then the path is called a closed simple path. 
 
Cycle A path in which the first and the last vertices are same. A simple cycle has no repeated edges or 

vertices (except the first and last vertices). 
 
Connected graph A graph is said to be connected if for any two vertices (u, v) in V there is a path from 

u to 
v. That is to say that there are no isolated nodes in a connected graph. A connected graph that does not 

have any cycle is called a tree. Therefore, a tree is treated as a special graph. 
 
Complete graph A graph G is said to be complete if all its nodes are fully connected. That is, there is a 

path from one node to every other node in the graph. A complete graph has n(n–1)/2 edges, where n is 
the number of nodes in G. 

 
Labelled graph or weighted graph A graph is said to be labelled if every edge in the graph is assigned 

some data. In a weighted graph, the edges of the graph are assigned some weight or length. The weight 
of an edge denoted by w(e) is a positive value which indicates the cost of traversing the edge. 

 
Multiple edges Distinct edges which connect the same end-points are called multiple edges. That is, e = 

(u, v) and e' = (u, v) are known as multiple edges of G. 
 
Loop An edge that has identical end-points is called a loop. That is, e = 

(u, u). Multi-graph A graph with multiple edges and/or loops is 

called a multi-graph. Size of a graph The size of a graph is the total 

number of edges in it. 

BI-CONNECTED components 
 
A vertex v of G is called an articulation point, if removing v along with the edges incident on v, results in 

a graph that has at least two connected components. 
 
A bi-connected graph is defined as a connected graph that has no articulation vertices. That is, a bi-

connected graph is connected and non-separable in the sense that even if we remove any vertex from the 
graph, the resultant graph is still connected. 

 

 



  

  

 

 

 
6.2 REPRESENTATION OF GRAPHS 
 
There are three common ways of storing graphs in the computer‘s 

memory. They are: 
• Sequential representation by using an adjacency matrix. 
• Linked representation by using an adjacency list that stores the neighbours of a node using a 

linked list. 
• Adjacency multi-list which is an extension of linked representation. 
 
6.2.1 Adjacency Matrix Representation 
 
An adjacency matrix is used to represent which nodes are adjacent to one another. By definition, two 

nodes are said to be adjacent if there is an edge connecting them. 
 
In a directed graph G, if node v is adjacent to node u, then there is definitely an edge from u to v. 

That is, if v is adjacent to u, we can get from u to v by traversing one edge. For any graph G having n 
nodes, the adjacency matrix will have the dimension of n × n. 

 
In an adjacency matrix, the rows and columns are labelled by graph vertices. An entry aij in the 

adjacency matrix will contain 1, if vertices vi and vj are adjacent to each other. However, if the 
nodes are not adjacent, aij will be set to zero. It is summarized in Figure. 

 
Since an adjacency matrix contains only 0s and 1s, it is called a bit matrix or a Boolean matrix. The 

entries in the matrix depend on the ordering of the nodes in G. Therefore, a change in the order of 

As for vertices, there is a related concept for edges. 
An edge in a graph is called a bridge if removing 
that edge results in a disconnected graph. 

 
Also, an edge in a graph that does not lie on a cycle 
is a bridge. This means that a bridge has at least one 
articulation point at its end, although it is not 
necessary that the articulation point is linked to a 
bridge. Look at the graph shown in Fig.1. 

 
In the graph, CD and DE are bridges. Consider 
some more examples shown in Fig. 2. 



  

  

nodes will result in a different adjacency matrix. 
 
From the above examples, we can draw the following conclusions: 
For a simple graph (that has no loops), the adjacency matrix has 0s on the diagonal. 
The adjacency matrix of an undirected graph is symmetric. 
The memory use of an adjacency matrix is O(n2), where n is the number of nodes in the graph. 
Number of 1s (or non-zero entries) in an adjacency matrix is equal to the number of edges in the graph. 
The adjacency matrix for a weighted graph contains the weights of the edges connecting the nodes. 
 
 

 
 

6.2.2 Adjacency List Representation 
 
An adjacency list is another way in which graphs can be represented in the computer‘s memory. 
This structure consists of a list of all nodes in G. Furthermore, every node is in turn linked to its own list 

that contains the names of all other nodes that are adjacent to it. 
 
The key advantages of using an adjacency list are: 
6.2.2.1 It is easy to follow and clearly shows the adjacent nodes of a particular node. 
6.2.2.2 It is often used for storing graphs that have a small-to-moderate number of edges. That is, an 

adjacency list is preferred for representing sparse graphs in the computer‘s memory; otherwise, an 

adjacency matrix is a good choice. 
6.2.2.3 Adding new nodes in G is easy and straightforward when G is represented using an 

adjacency list. Adding new nodes in an adjacency matrix is a difficult task, as the size of the 
matrix needs to be changed and existing nodes may have to be reordered. 

 

 
 
 



  

  

 

 

6.3 GRAPH TRAVERSAL ALGORITHMS 
 
In this section, we will discuss how to traverse graphs. By traversing a graph, we mean the method of 

examining the nodes and edges of the graph. There are two standard methods of graph traversal 
which we will discuss in this section. 

These two methods are: 
1. Breadth-first search 
2. Depth-first search 
 
While breadth-first search uses a queue as an auxiliary data structure to store nodes for further 

processing, the depth-first search scheme uses a stack. But both these algorithms make use of a 
variable STATUS. During the execution of the algorithm, every node in the graph will have the 
variable STATUS set to 1 or 2, depending on its current state. 

 
6.4 Breadth-first search (BFS): 

 
Breadth-first search (BFS) is a graph search algorithm that begins at the root node and explores all the 

neighbouring nodes. Then for each of those nearest nodes, the algorithm explores their unexplored 
neighbour nodes, and so on, until it finds the goal. 

 
That is, we start examining the node A and then all the neighbours of A are examined. In the next 

step, we examine the neighbours of neighbours of A, so on and so forth. This means that we need to 
track the neighbours of the node and guarantee that every node in the graph is processed and no node 
is processed more than once. This is accomplished by using a queue that will hold the nodes that are 
waiting for further processing and a variable STATUS to represent the current state of the node. 

 
 

 
 

Solution: 
 



  

  

• The minimum path P can be found by applying the breadth-first search algorithm that begins at city 
A and ends when I is encountered. 

• During the execution of the algorithm, we use two arrays: QUEUE and ORIG. 
• While QUEUE is used to hold the nodes that have to be processed, ORIG is used to keep track of 

the origin of each edge. Initially, FRONT = REAR = –1. 
• Initially, FRONT = REAR = –1. 
 
The algorithm for this is as follows: 
 
(a) Add A to QUEUE and add NULL to ORIG. 

 
(b) Dequeue a node by setting FRONT = FRONT + 1 (remove the FRONT element of QUEUE) 

and enqueue the neighbours of A. Also, add A as the ORIG of its neighbours. 

 
(c) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of B. Also, 

add B as the ORIG of its neighbours. 

 
(d) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of C. Also, add 

C as the ORIG of its neighbours. Note that C has two neighbours B and G. Since B has already 
been added to the queue and it is not in the Ready state, we will not add B and only add G. 

 
 
 
 
(e) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of D. Also, add 

D as the ORIG of its neighbours. Note that D has two neighbours C and G. Since both of them have 
already been added to the queue and they are not in the Ready state, we will not add them again. 

 
(f) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of E. Also, add E 

as the ORIG of its neighbours. Note that E has two neighbours C and F. Since C has already been 
added to the queue and it is not in the Ready state, we will not add C and add only F. 

 
 

(g) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of G. Also, 
add G as the ORIG of its neighbours. Note that G has three neighbours F, H, and I. 

 
Since F has already been added to the queue, we will only add H and I. As I is our final destination, 



  

  

we stop the execution of this algorithm as soon as it is encountered and added to the QUEUE. Now, 
backtrack from I using ORIG to find the minimum path P. Thus, we have Path P as A -> C -> G -> I. 

 
The time complexity can also be expressed as O( | E | + | V | ) 
 

6.5 DEPTH-FIRST SEARCH (DFS) 
 
The depth-first search algorithm progresses by expanding the starting node of G and then going deeper 

and deeper until the goal node is found, or until a node that has no children is encountered. When a 
dead-end is reached, the algorithm backtracks, returning to the most recent node that has not been 
completely explored. 

In other words, depth-first search begins at a starting node A which becomes the current node. 
 
Then, it examines each node N along a path P which begins at A. That is, we process a neighbor of A, 

then a neighbour of neighbour of A, and so on. During the execution of the algorithm, if we reach a 
path that has a node N that has already been processed, then we backtrack to the current node. 
Otherwise, the unvisited (unprocessed) node becomes the current node. 

 
 
 

Consider the graph G given in Figure. The adjacency list of G is also given. Suppose we want to print 
all the nodes that can be reached from the node H (including H itself). One alternative is to use a 
depth-first search of G starting at node H. The procedure can be explained here. 

 
(a) Push H onto the stack. 

 
 

(b) Pop and print the top element of the STACK, that is, H. Push all the neighbours of H 
onto the stack that are in the ready state. The STACK now becomes 

 
(c) Pop and print the top element of the STACK, that is, I. Push all the neighbours of I onto 

the stack that are in the ready state. The STACK now becomes 

 
 
 



  

  

(d) Pop and print the top element of the STACK, that is, F. Push all the neighbours of F onto the 
stack that are in the ready state. (Note F has two neighbours, C and H. But only C will be added, as 
H is not in the ready state.) The STACK now becomes 

 
(e) Pop and print the top element of the STACK, that is, C. Push all the neighbours of C onto the 

stack that are in the ready state. The STACK now becomes 

 
(f) Pop and print the top element of the STACK, that is, G. Push all the neighbours of G onto the 

stack that are in the ready state. Since there are no neighbours of G that are in the ready state, no 
push operation is performed. The STACK now becomes 

 
(g) Pop and print the top element of the STACK, that is, B. Push all the neighbours of B onto the 

stack that are in the ready state. Since there are no neighbours of B that are in the ready state, no push 
operation is performed. The STACK now becomes 

 
(h) Pop and print the top element of the STACK, that is, E. Push all the neighbours of E onto the 

stack that are in the ready state. Since there are no neighbours of E that are in the ready state, no 
push operation is performed. The STACK now becomes empty. 

 
Since the STACK is now empty, the depth-first search of G starting at node H is complete and 

the nodes which were printed are: H, I, F, C, G, B, E. 
 
These are the nodes which are reachable 

from the node H. The time complexity can 

be given as (O(|V| + |E|)). 
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7.1 LINEAR SEARCH: 

Definition: 
 It starts at the beginning of the list and checks every element of the list. 
 i.e. It sequentially checks each element of the list until a match is found or the whole list has 

been searched. So it is also called sequential search. 
Example: 
 Let the elements are: 10,6,3,8,9,12,14 
 The search element is : 12 
 Now it compare 12 with each and every element. 
 The 12 is available in 6th place. 
 So the searching process is success and element is found 
Algorithm: 
Step 1: Read 

elements in array 
Step 2: Read the 
element to search 

Step 3: Compare the element to sear and each element in array 
sequentially Step 4: If match is found then the search success 

Step 5: If match is not found upto the end then the search un success 
Program: #include <stdio.h> int main() 
{ 
int a[100],n,i,s; 
printf("Enter Number of Elements in 

Array:\n"); scanf("%d", &n); 
printf("Enter 

numbers:\n")
; for(i = 0; i < 
n; i++) 
scanf("%d",
&a[i]); 

printf("Enter a number to search in 
Array:\n"); scanf("%d", &s); 

for(i = 0; i < n; i++) 
{ 
if(s==a[i]) 
{ 
printf("Number found\n‖); 

break; 
} 
} 
if(i== n) 
printf("Number 

not found\n‖); 
return 0; 

} 
  



  

  

 
7.2 BINARY SEARCH: 

Definition: 
 Binary search is the most popular Search algorithm. It is efficient and also 

one of the most commonly used techniques that are used to solve problems. 
 Binary search sorts the records either in ascending or descending order to gain much better 

performance than linear search. 
 Now suppose we have an ascending order record. At the time of search it takes the middle 

record/element, if the searching element is greater than middle element then the element mush be 
located in the second part 

else it is in the first half. In this way this search algorithm divides the records in the two parts 
in each iteration and thus called binary search. 

Example: 
 Let the elements in 

ascending order are 2 4 6 
8 10 12 15 
 Let the element to search 12 
 For searching it compare first 

middle element. 2 4 6 8 10 12 15 
 The middle element is 8 and is not equal to 12. Since 12 is greater than 8 search on right side 

part of 8. 12 is equal to right side part middle. So element is found. 
Algorithm: 
Step 1: Read sorted 

elements in array 
Step 2: Read the 
element to search 

Step 3: Compare the element to sear and middle element in array. If match is found the search success. 
Step 4: If match is not found check the search element with middle element. If search element is 

greater than the middle element then search on right side of middle element otherwise search on left. 
Step 5: This process is repeated for all elements in array. If no match is found upto the end then the 

search is not success. 
Program: #include <stdio.h> int main() 
{ 
int i, first, last, middle, n, s, a[100]; printf("Enter number of elements:\n"); scanf("%d",&n); 
printf("Enter elements in ascending order:\n"); for (i = 0; i < n; i++) 
scanf("%d",&a[i]); 
printf("Enter an element to search:\n"); scanf("%d", &s); 
first = 0; last = n - 1; 
middle = (first+last)/2; while (first <= last) 
{ 
if(s==a[middle]) 
{ 
printf("Element is found at index: %d",middle); break; 
} 
else if(s>a[middle]) first = middle + 1; else if(s<a[middle]) last = middle - 1; 
middle = (first + last)/2; 
} 
if (first > last) 
printf("Element is not found"); return 0; 
} 
7.3 FIBONACCI SEARCH: 
 Fibonacci Search uses Fibonacci numbers to search an element in a sorted array. 
 Fibonacci numbers are: 0,1,1,2,3,5,8… 
 Fibonacci series generates the subsequent number by adding two previous numbers 
Example: Let the elements are given by 

10, 22, 35, 40, 45, 50, 80, 82, 85, 90,100 



  

  

arr[] = {10, 22, 35, 40, 45, 50, 80, 82, 85, 90,100} 
 Fibonacci No‘s are: 0,1,1,2,3,5,8,13,21,… Target element x is 85. Length of array n = 11 
 Find the smallest Fibonacci number greater than or equal to 11 is 13. 
 As per our step, a= 5, b = 8, and c = a+b=13. 
 Let offset=-1 
 First Compute i= min(offset+a, n-1) 
 If x is greater than the element, move the three Fibonacci variables one Fibonacci down. Reset 

offset to index. Else If x is less than the element, move the three Fibonacci variables two 
Fibonacci down. Else ( or when b=1) return i – This is the case Element Found 
 If element not found return -1 
 These steps are shown in the following table 

 
Algorithm: 
Let arr[0..n-1] be the input array and element to be searched be x. 
Step 1: Find the smallest Fibonacci Number greater than or equal to n. Let this number be c. 

Let the two Fibonacci numbers preceding it be a,b. 
Step 2: While the array has elements to be inspected such as: 
Step-2.1: Compute i= min(offset+a, n-1) 
Step-2.2: If x is greater than the element, move the three Fibonacci variables one Fibonacci down. 

Reset offset to index. 
Step-2.3: Else If x is less than the element, move the three Fibonacci variables two 

Fibonacci down Step-2.4: Else ( or when b=1) return i – This is the case Element Found 
Step-3: If element not found return -1 
 
Program: #include <stdio.h> int min(int x, int y) 
{ 
return (x<=y)? x : y; 
} 
int search(int arr[], int x, int n) 
{ 
int a = 0; int b = 1; 
int c = a + b; while (c < n) 
{ 
a = b; b = c; 
c = a + b; 
} 
int offset = -1; while (c > 1) 
{ 
int i = min(offset+a, n-1); 
 

if (x>arr[i]) 
{ 
c = b; b = a; 
a = c - b; offset = i; 
} 
else if (x<arr[i]) 
{ 



  

  

c = a; 
b = b - a; 
a = c - b; 
} 
else return i; 
} 
return -1; 
} 
int main() 
{ 
int arr[] = {10, 22, 35, 40, 45, 50, 80, 82, 85, 90, 100}; 
int n = sizeof(arr)/sizeof(arr[0]); int x,s; 
printf("Enter an element to search:\n"); scanf("%d",&x); 
s=search(arr, x, n); if(s==-1) 
printf("Element is not found"); else 
printf("Element is Found at index: %d", s); return 0; 
} 
 
7.4 SORTING  
 Sorting is a process of placing a list of elements from the collection of data in some order. 
 It is nothing but storage of data in sorted order. Sorting can be done in ascending and 

descending order. It arranges the data in a sequence which makes searching easier 
 

7.5 INSERTION SORT: 
 In this sorting technique first elements are stored in an array. 
 The process of sorting starts with second element. 
 First the second element is picked and is placed in specified order Next third element is picked 

and is placed in specified order. Similarly the fourth, fifth, …n
th element .is placed in specified 

order. 
 Finally we get the sorting elements. 
Example: 

 Let us consider the elements: 12, 3, 1, 5, 8 
7.6 Checking second element of array with element before it and inserting it in proper position. 

In this case 3 is inserted in position of 12 

 
  

 
7.7 Checking third element of array with elements before it and inserting it in proper position. In 

this case 1 is 
inserted in position of 3 

 
 

 
7.8 Checking fourth element of array with elements before it and inserting it in proper position. In 

this case 5 
is inserted in position of 12 

  
7.9 Checking fifth element of array with elements before it and inserting it in proper position. In 

this case 8 is 
inserted in position of 12 

 
7.10 Sorted array in ascending order 

     

     

    

     



  

  

     
Algorithm: 
Step 1: Check second element of array with element before it and insert it in proper 

position. Step 2: Checking third element of array with element before it and inserting 
it in proper position. Step 3: Repeat this till all elements are checked. 

Step 4: Stop 
Program: #include<stdio.h> int main() 
{ 
int n,a[30],key,i,j; 
printf("Enter total 

elements:\n"); 
scanf("%d",&n); 

printf("Enter 
elements:\n"
); 
for(i=0;i<n;i
++) 
scanf("%d",
&a[i]); 
for(i=1;i<n;i
++) 

{ 
j=i; 

while(j>0 && a[j]<a[j-1]) 
{ 
temp=a[j]

; 
a[j]=a[j-
1]; a[j-
1]=temp
; 

j--; 
} 
} 
printf("After 

sorting 
is:\n"); 
for(i=0;i<n;i
++) 

print
f(" 
%d
",a
[i])
; 
ret
urn 
0; 

} 
 
7.6  SELECTION SORT: 

 Selection sort is an algorithm that selects the smallest element from an unsorted list in each 
iteration and places that element at the beginning of the unsorted list. 

Example: 
 The following figure shows the first pass of a selection sort. 

First pass 

    12 



  

  

 

assign 54 min 
 

assign 26 min 
 

assign 26 min 
 

assign 17 min 
 

assign 17 min 
 

assign 17 min 
 

assign 17 min 
 

assign 10 min 

 

 

Exchange 10 and 5 after first pass 
 In first pass the first element is compared with all remaining elements and exchange element if 
first one is greater than second so that the smallest value is in first place. Leave this element. 
 In second pass compare second element to all elements and put the next smallest value, in 
second place. Leave this element. This process is repeated till all the elements are placed. 
 Now we get the sorted elements. 

Algorithm: 
Step 1 − Set min to the first location. 
Step 2 − Search the minimum element in the array. 
Step 3 – swap the first location with the minimum value in 

the array. Step 4 – assign the second element as min. 
Step 5 − Repeat the process until we get a sorted array. 
Program: #include<stdio.h> int main() 
{ 
int 

n,i,j,temp,a[20],m
in; printf("Enter 
total 
elements:\n"); 
scanf("%d",&n); 

printf("Enter 
elements:\n")
; 
for(i=0;i<n;i
++) 
scanf("%d",
&a[i]); 
for(i=0;i<n;i
++) 

{ 
min=i; 

for(j=i+1
;j<n;j++) 

{ 
if(a[j] < 

a[min]) 
min=j; 

         
 

         
 

         
 

         
 

         
 

         
 

         
 

         
 

         

 



  

  

} 
temp=

a[i]; 
a[i]=
a[mi
n]; 
a[mi
n]=t
emp; 

} 
printf("After 

sorting 
is:\n"); 
for(i=0;i<n;i
++) 

print
f(" 
%d
",a
[i])
; 
ret
urn 
0; 

} 
 
7.7 EXCHANGE SORT: 

 The exchange sort is almost similar as the bubble sort. The exchange sort compares each element 
of an array and swap those elements that are not in their proper position, 

just like a bubble sort does. The only difference between the two sorting algorithms is the manner in 
which they compare the elements.. 

 
7.8 BUBBLE SORT: 
 Bubble Sort is based on the idea of repeatedly comparing pairs of adjacent elements and then 

swapping their positions if they exist in the wrong order. 
Example: 
 The following figure shows the first pass of a bubble sort. In first pass the first element is 

compared with second and exchange element if first one is greater than second. 
 Similarly second element is compared with third and exchange element if second one is greater 

than third. 
 Repeat this so that at the end of first pass the largest value is in last place. Leave this element. 
 
First pass 
 
 
 
 
 
 

 

 

 

         
 

         
 

         
 

         
 

         
 



  

  

 

 

 

Algorithm: 
Step 1: The first element is compared with second and exchange element if first one is greater than 

second 
Step 2: Similarly second element is compared with third and exchange element if second one is 

greater than third Step 3: Repeat this so that at the end the largest value is in last place 
Step 4: Likewise sorting is repeated for all elements. 
Program: #include<stdio.h> int main() 
{ 
int n,temp,i,j,a[20]; 
printf("Enter total numbers of 

elements:\n"); scanf("%d",&n); 
printf("Enter 

elements:\n"); 
for(i=0;i<n;i++) 
scanf("%d",&a[i]
); 
for(i=0;i<n;i++) 

{ 
for(j=0;j<n-1;j++) 
{ 
if(a[j]>a[j+1]) 
{ 
temp=a[j]; 

a[j]=a[j+1]; 
a[j+1]=temp; 

} 
} 
} 
printf("After sorting elements 

are:\n"); for(i=0;i<n;i++) 
printf(" 

%d",a[i
]); 
return 
0; 

} 
 
7.9 QUICK SORT: 
 Quick Sort is also one of the exchange sort. 
 In a quick sort we take pivot element, then we place all the smaller elements are on one side 

of pivot, and greater elements are on other side of pivot. 
 After partitioning we have pivot in the final position. After repeatedly partitioning, we 

get the sorted elements. 
Example: 
 Let us 

consider the 
elements: 
35,50,15,25,8
0,20,90,45 

         
 

         
          
 

         
 



  

  

 Let us consider the first element 35 as pivot or i. The last element 45 as j 

 
 50 which is greater than pivot taken as i and the 20 smaller than pivot taken as j 
 
 

 
 Now i is less than j so swap the elements in i and j. 

 
 Find greater than 35 (80)is i and less than 35(25) is j 

 
 Now i is not less than j. swap 35 and j so 35 becomes at j place. 

 
 Now 35 is in correct position. 
 On left side and right side of 35 repeat the process. Consider on left side of 35 

 
 Let 25 as pivot. The lesser of 25 that is 15 as j and there is no greater. So bring i after j i > j so 

swap pivot and j 

 
 After swapping 

 
 Now the left part is sorted. Consider right part 



  

  

 

 
 Here 80 as pivot, Greater than to 80 is i and less than to 80 is j 

 
 Here i is less than j so swap i and j elements. 
 

 
 first find greater to 80 is i and lesser to 80 is j. i > j so swap 80 and j. 

 
 
 After swapping. The sorting elements are given by 
 

 
 Now join all left part j and right part j to get the sorted elements 

 
Algorithm: 
Step 1: Let the first element taken as pivot 
Step 2: Find lesser of pivot say i and greater of pivot say j. 
Step 3: If i is less than j then i and j elements are swapped. Repeat step 2 
Step 4: Repeat 

step 3 until i > 
j Now swap j 
and pivot 

Step 5: Now the pivot element is final position. 
Repeat the above procedure for left and right side of pivot elements until all elements are sorted 
Step 6: Stop 
 



  

  

 
Program: #include<stdio.> 
void quicksort(int a[25],int first,int last) 

{ 
int i, j, 

pivot, 
temp; 
if(firs
t<last
) 

{ 
pivot=

first; 
i=fir
st; 
j=las
t; 
whil
e(i<j
) 

{ 
while(a[i]<a[pivot]&&i<=last) i++; 
while(a[j]>a[pivot]) j--; 

if(i<j) 
{ 

temp=a[i]; a[i]=a[j]; 
a[j]=temp; 

} 
} 
temp=a[pivot]; 

a[pivot]=a[j]; 
a[j]=temp; 
quicksort(a,first
,j-1); 
quicksort(a,j+1,
last); 

} 
} 
int main() 
{ 
int i, n, a[25]; 
printf("Enter total a of 

elements:\n "); 
scanf("%d",&n); 

printf("Enter 
elements:\n"); 
for(i=0;i<n;i+
+) 
scanf("%d",&
a[i]); 

quicksort(a,0,n-1); 
printf("The Sorted 

elements are:\n "); 
for(i=0;i<n;i++) 

printf(
" 
%d",



  

  

a[i]); 
retur
n 0; 

} 
 

(iv) Distribution Sort or Radix Sort: 
 Radix sort is one of the sorting algorithms used to sort a list of integer numbers in ascending or 

descending order. 
 In radix sort algorithm, a list of integer numbers will be sorted based on the digits of 

individual numbers. Sorting is performed from least significant digit to the most significant digit 
 Radix sort algorithm requires the number of passes which are equal to the number of digits 

present in the largest number among the list of numbers. 
 For example, if the largest number is a 3 digit number then that list is sorted with 3 passes. 
 Example: 

 

 



  

  

Algorithm 
Step 1 - Define 10 queues each representing a bucket for each digit from 0 to 9. 
Step 2 - Consider the least significant digit of each number in the list which is to 

be sorted. Step 3 - Insert each number into their respective queue based on the 
least significant digit. 

Step 4 - Group all the numbers from queue 0 to queue 9 in the order they have inserted into their 
respective queues. 

Step 5 - Repeat from step 3 based on the next least significant digit. 
Step 6 - Repeat from step 2 until all the numbers are grouped based on the most significant digit. 
 
Program: 
#include<stdio.h> 
int getMax(int arr[], int n) 
{ 
int 

max 
= 
arr[0]
; int i; 

for (i = 1; i < n; i++) 
{ 
if (arr[i] > 

max) max = 
arr[i]; 

} 
return max; 
} 
void countSort(int arr[], int n, int exp) 
{ 
int output[n]; // 

output array int i, 
count[10] = { 0 
}; 

// Store count of occurrences 
in count[] for (i = 0; i < n; 
i++) 

count[(arr[i] / exp) 
% 10]++; for (i = 
1; i < 10; i++) 
count[i] += 
count[i - 1]; 

// Build the 
output array 
for (i = n - 1; 
i >= 0; i--) 

{ 
output[count[(arr[i] / exp) % 10] - 1] = 

arr[i]; count[(arr[i] / exp) % 10]--; 
} 
for (i = 0; i < 

n; i++) 
arr[i] = 
output[i]; 

} 
// The main function to that sorts arr[] of size n 

using Radix Sort void radixsort(int a[], int n) 
{ 
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 10 82 

 

int max = 
getMax(a, 
n); int i; 

for (i = 1; max / i > 
0; i *= 10) 
countSort(a, n, i); 

} 
int main() 
{ 
int a[] = { 170, 45, 75, 90, 802, 24, 2, 66 }; 
int i; 
int n = sizeof(a) / 

sizeof(a[0]); 
radixsort(a, n); 

for (i = 0; 
i < n; 
i++) 
printf("
%d ", 
a[i]); 
return 0; } 

7.11 Merging or Merge Sort: 
 It divides input array into two halves, calls itself for the two halves and then sorted and 

merged that two halves. 
Example: 
 For example consider the array of elements: 38, 27, 43, 3, 9, 82, 10 
 Now the array is recursively divided into two halves till the size becomes one which is 

shown in the following figure. 
 

38 27 43 3 9 82 10 
 

 
 
 
 
 

 Once the size becomes one, the merge process comes into action and starts merging with sorted 
array till the complete array is merged 

 
 
 
 
 
 

 
 

3 9 10 27 38 43 82 
 

Algorithm: 
Step 1 − If it is only one element in the list then it is already sorted. 



  

  

Step 2 − Divide the list recursively into two halves till the size becomes one. 
Step 3 − Once the size becomes 1, the merge process comes into action and starts merging with 

sorted array till the complete array is merged 



  

  

Program: 
#include<stdio.h> 
int n,a[30],i,j,k,temp[30]; 
void merge(int low,int mid,int high) 
{ 
i=low; j=mid+1; k=low; 
while((i<=mid) && (j<=high)) 
{ 
if(a[i]>=a[j]) 

temp[k++]=a[j++
]; else 
temp[k++]=a[i++
]; 

} 
while(i<=mid) 

temp[k++]=a[i++]; 
while(j<=high) 
temp[k++]=a[j++]; 
for(i=low;i<=high;i++) 
a[i]=temp[i]; 

} 
void mergesort(int low,int high) 
{ 
int 

mid; 
if(lo
w!=h
igh) 

{ 
mid=((low+high)/2); 

mergesort(low,mid); 
mergesort(mid+1,hig
h); 
merge(low,mid,high
); 

} 
} 
int main() 
{ 
printf("Enter total 

elements:\n"); 
scanf("%d",&n); 

printf("Enter 
elements:\n"); 
for(i=0;i<n;i++) 
scanf("%d",&a[i]); 
mergesort(0,n-1); 
printf("After 
sorting is:\n"); 
for(i=0;i<n;i++) 

printf(" 
%d",a[i]); 
return 0; 

} 



  

  

Time Complexity: 
 O(n^2) means that for every insert, it takes n*n operations. i.e. 1 operation for 1 item, 4 

operations for 2 items, 9 operations for 3 items. 
Comparison of Sorting Algorithms 

 
 
 
Complexity of Radix Sort: 
 Radix sort is a non-comparative algorithm, it has advantages over comparative sorting algorithms. 
 For the radix sort that uses counting sort as an intermediate stable sort, the time complexity is 

O(d(n+k)). 
 Here, d is the number cycle and O(n+k) is the time complexity of counting sort 
 Thus, radix sort has linear time 
 complexity which is better than 
 O(nlog n) of comparative sorting algorithms. 
 If we take very large digit numbers or the number of other bases like 32-bit and 
 64-bit numbers then it can perform in linear time however the intermediate sort takes large space. 
 This makes radix sort space inefficient. 
 This is the reason why this sort is not used in software libraries. 
Best case, Worst case and Average Case of Radix sort - 
 Radix sort complexity is O(kn) for n keys which are integers of word size k. 
 For all there cases time i.e best , worst and average time complexity is O(kn) 
 
 
 
 
 
 


