

The Motto of the University

(SEWA)

SKILL ENHANCEMENT EMPLOYABILITY WISDOM

 ACCESSIBILITY

 M.SC. (COMPUTER SCIENCE)

 SEMESTER-II

 Course: OPERATING SYSTEMS LAB (MSCS-2-01P)

 Laboratory Manual

 ADDRESS: C/28, THE LOWER MALL, PATIALA-147001

 WEBSITE: www.psou.ac.in

S
E

L
F

-I
N

S
T

R
U

C
T

IO
N

A
L

 S
T

U
D

Y
 M

A
T

E
R

IA
L

 F
O

R
 J

G
N

D
 P

S
O

U
,
A

L
L

 C
O

P
Y

R
IG

H
T

S
 W

IT
H

 J
G

N
D

 P
S

O
U

,
P

A
T

IA
L

A

JAGAT GURU NANAK DEV

PUNJAB STATE OPEN UNIVERSITY, PATIALA
(Established by Act No. 19 of 2019 of the Legislature of State of Punjab)

http://www.psou.ac.in/

 JAGAT GURU NANAK DEV

 PUNJAB STATE OPEN UNIVERSITY PATIALA

 (Established by Act No.19 of 2019 of Legislature of the State of Punjab)

Faculty of School of Sciences and Emerging Technologies

1. Dr. Baljit Singh Khehra (Head)

Professor of Computer Science

Jagat Guru Nanak Dev Punjab State Open University, Patiala

2. Dr. Kanwalvir Singh Dhindsa

Professor of Computer Science

Jagat Guru Nanak Dev Punjab State Open University, Patiala

3. Dr. Amitoj Singh

Associate Professor of Computer Science

Jagat Guru Nanak Dev Punjab State Open University, Patiala

4. Dr. Karan Sukhija

Assistant Professor of Computer Science

Jagat Guru Nanak Dev Punjab State Open University, Patiala

5. Dr. Monika Pathak

Assistant Professor of Computer Science

Jagat Guru Nanak Dev Punjab State Open University, Patiala

 JAGAT GURU NANAK DEV

 PUNJAB STATE OPEN UNIVERSITY PATIALA

 (Established by Act No.19 of 2019 of Legislature of the State of Punjab)

PREFACE

 Jagat Guru Nanak Dev Punjab State Open University, Patiala was established in

December 2019 by Act 19 of the Legislature of State of Punjab. It is the first and only Open

University of the State, entrusted with the responsibility of making higher education accessible

to all especially to those sections of society who do not have the means, time or opportunity to

pursue regular education.

 In keeping with the nature of an Open University, this University provides a flexible

education system to suit every need. The time given to complete a programme is double the

duration of a regular mode programme. Well-designed study material has been prepared in

consultation with experts in their respective fields.

 The University offers programmes which have been designed to provide relevant, skill-

based and employability-enhancing education. The study material provided in this booklet is

self-instructional, with self-assessment exercises, and recommendations for further readings.

The syllabus has been divided in sections, and provided as units for simplification.

 The Learner Support Centres/Study Centres are located in the Government and

Government aided colleges of Punjab, to enable students to make use of reading facilities, and

for curriculum-based counselling and practicals. We, at the University, welcome you to be a

part of this institution of knowledge.

Prof. G. S. Batra,

 Dean Academic Affairs

OPERATING SYSTEM

LABORATORY MANUAL

M.Sc (Computer Science)

(1st Year-2nd Semester)

SCHOOL OF SCIENCES & EMERGING

TECHNOLOGIES

JAGAT GURU NANAK DEV

PUNJAB STATE OPEN UNIVERSITY,

PATIALA

Programme Outcomes (POs)

Programme: MSc (Computer Science)

Programme Outcomes (POs)

On successful completion of this programme, the students will be able to:

PO1 Develop an understanding of basic theoretical principles in computer science and

perspectives in computer science by critical thinking.

PO2 Identify, formulate, review research literature, and analyze problems reaching

substantiated conclusions using principles of computer science

PO3 Design solutions for problems and design system processes that meet the specified

needs with appropriate consideration for the public health and safety, and the

environmental considerations.

PO4 Use research-based knowledge and research methods including design of

experiments, analysis and interpretation of data, and synthesis of the information

to provide valid conclusions.

PO5 Create, select and use appropriate techniques, skills, and modern IT tools

necessary for computing practice with an understanding of the limitations.

PO6 Apply ethical principles in their research and professional activities and familiar

with the professional standards and practices of the field of computer science.

PO7 Work collaboratively with others, both within and outside of their discipline, to

solve complex problems and develop innovative solutions.

PO8 Communicate their ideas and research findings effectively to both technical and

non-technical audiences, through written reports, oral presentations, and other

media.

PO9 Demonstrate knowledge and understanding of the science and management

principles and apply these to one’s own work, as a member and leader of diverse

teams, to manage projects and in multidisciplinary environments.

PO10 Recognize the need for, and have the preparation and ability to engage in

continuing professional development and life-long learning in the broadest context

of technological change.

Programme: MSc (Computer Science)

Programme Specific Outcomes (PSOs)

On successful completion of this programme, the students will be able to:

PSO1 Design and implement software solutions to complex problems using computer

programming languages.

PSO2 Understand computer systems, including operating systems, networks, and

databases for designing and developing computer-based systems.

PSO3 develop professional skills such as communication, teamwork, and project

management that are essential for success in the computer science industry.

PSO4 Apply software engineering principles to develop and manage software projects,

including requirements analysis, design, implementation, and testing.

PSO5 Gain ability to apply knowledge of Computer Science to the real-world issues.

Course: Operating Systems Lab

Course Code: MSCS-2-01P

Course Outcomes (COs)

After the completion of this course, the students will be able to:

CO1 Demonstrate the installation process of various operating systems.

CO2 Implement virtualization by installing Virtual Machine software.

CO3 Apply UNIX/LINUX operating system commands.

CO4 Understand different UNIX/LINUX shell scripts

CO5 Implement and execute various shell programs.

1

EXPERIMENT NO: 1. a)

To Install Ubuntu Linux – Complete Step by Step

Step 1 : Insert the ubuntu cd in the cd drive and boot the

computer from cd. First of all you will be prompted to

select language. elect English or other language according

to your preferences.

Step 2 : Now you will see ubuntu menu, you can choose

Try ubuntu without installing option to try ubuntu
without actually installing it on your hard drive. For

installing ubuntu choose the second option Install

Ubuntu.

Step 3 : Ubuntu will start now initialize and after few minutes you can see the installation wizard.

2

Step 4 : Click Forward and it will check

the minimum requirements for running ubuntu on your

PC. If everything is fine you can see green colored tick

marks. You can also select to download updates while

installing and install some third party software. After

selecting the things you want click forward.

manually option. You can choose the 1st option if you just
want linux to exist in your system. Else select second

option. Now it will display the free space available for

your pc.

Step 5 : Now you can choose either erase and use entire disk
option or specify partitions

Select free space and click on Add option to create a new

partition and choose partition type as primary, size around

70% of the free space available or choose anything like
10,000 or 20,000mb, use as ext3 journaling file system and

select mount point as
/.

Now again select free space from the table and click add
option. Now select size to be around 300mb, use as ext3
journaling file system and select mount point as /boot.

http://listthemout.com/wp-content/uploads/2011/04/ubuntu-requirements.png
http://listthemout.com/wp-content/uploads/2011/04/ubuntu-requirements.png
http://listthemout.com/wp-content/uploads/2011/04/ubuntu-requirements.png

3

Now again select free space from the table and click add
option. Now select size to be around twice the size of

your ram that is around 1000 mb if your ram size is

512mb and select use as swap area and click ok.

Step 6 : Click Install now button and then the wizard will

ask you location. Select your location and click forward.

4

Step 7 : While you are selecting these options wizard will

continue to copy files. Now select your desired keyboard

layout and click forward.

Step 8 : Now fill in the details about yourself. Fill your name, computer name, choose a username and create a password

and click forward and let ubuntu copy all the essential files.

5

Step 9 : After all files have been copied and installed ubuntu will display a message saying that installation complete and click

on restart button to restart your computer. Remove the cd from the cd drive.

Step 10 : After restarting your pc wait for the ubuntu to load and then it will display the login screen. Choose the user and

enter password and click login.

6

A-Z Index of the Bash command line for Linux

a

a

a
a

alias Create an alias •

apropos Search Help manual pages (man -k)

apt-get Search for and install software packages (Debian/Ubuntu) aptitude Search for and install

software packages (Debian/Ubuntu) aspell Spell Checker

awk Find and Replace text, database sort/validate/index
b

basename Strip directory and suffix from filenames bash GNU

Bourne-Again SHell

bc Arbitrary precision calculator language bg Send to

background

bind Set or display readline key and function bindings • break Exit from a

loop •

builtin Run a shell builtin

bzip2 Compress or decompress named file(s)

c
cal Display a calendar

case Conditionally perform a command

cat Concatenate and print (display) the content of files cd Change Directory

cfdisk Partition table manipulator for Linux
chattr Change file attributes on a Linux file system chgrp Change

group ownership

chmod Change access permissions chown

 Change file owner and group

chroot Run a command with a different root directory chkconfig System
services (runlevel)

cksum Print CRC checksum and byte counts clear

 Clear terminal screen

cmp Compare two files

comm Compare two sorted files line by line command Run a

command - ignoring shell functions • continue Resume the next iteration of

a loop •

cp Copy one or more files to another location cron Daemon to

execute scheduled commands crontab Schedule a command to run at a later

time csplit Split a file into context-determined pieces curl Transfer data

from or to a server

cut Divide a file into several parts

d

date Display or change the date & time dc Desk

Calculator

dd Convert and copy a file, write disk headers, boot records
7

https://ss64.com/bash/alias.html
https://ss64.com/bash/apt-get.html
https://ss64.com/bash/aptitude.html
https://ss64.com/bash/aspell.html
https://ss64.com/bash/awk.html
https://ss64.com/bash/basename.html
https://ss64.com/bash/bc.html
https://ss64.com/bash/bg.html
https://ss64.com/bash/bind.html
https://ss64.com/bash/break.html
https://ss64.com/bash/builtin.html
https://ss64.com/bash/bzip2.html
https://ss64.com/bash/cal.html
https://ss64.com/bash/case.html
https://ss64.com/bash/cat.html
https://ss64.com/bash/cd.html
https://ss64.com/bash/cfdisk.html
https://ss64.com/bash/chattr.html
https://ss64.com/bash/chgrp.html
https://ss64.com/bash/chmod.html
https://ss64.com/bash/chown.html
https://ss64.com/bash/chown.html
https://ss64.com/bash/chroot.html
https://ss64.com/bash/chkconfig.html
https://ss64.com/bash/cksum.html
https://ss64.com/bash/cmp.html
https://ss64.com/bash/comm.html
https://ss64.com/bash/command.html
https://ss64.com/bash/continue.html
https://ss64.com/bash/cp.html
https://ss64.com/bash/cron.html
https://ss64.com/bash/crontab.html
https://ss64.com/bash/csplit.html
https://ss64.com/bash/curl.html
https://ss64.com/bash/cut.html
https://ss64.com/bash/date.html
https://ss64.com/bash/dc.html
https://ss64.com/bash/dd.html

8

ddrescue Data recovery tool

declare Declare variables and give them attributes • df Display free disk

space

diff Display the differences between two files diff3 Show

differences among three files

dig DNS lookup

dir Briefly list directory contents dircolors Colour

setup for ̀ ls'

dirname Convert a full pathname to just a path dirs Display list of

remembered directories dmesg Print kernel & driver messages

du Estimate file space usage

e
echo Display message on screen •

egrep Search file(s) for lines that match an extended expression eject Eject removable

media

enable Enable and disable builtin shell commands • env

 Environment variables

eval Evaluate several commands/arguments exec

 Execute a command

exit Exit the shell

expect Automate arbitrary applications accessed over a terminal expand Convert tabs to

spaces

export Set an environment variable expr
 Evaluate expressions

f

false Do nothing, unsuccessfully fdformat Low-

level format a floppy disk

fdisk Partition table manipulator for Linux fg Send job

to foreground

fgrep Search file(s) for lines that match a fixed string file Determine file type

find Search for files that meet a desired criteria fmt Reformat

paragraph text

fold Wrap text to fit a specified width. for Expand

words, and execute commands format Format disks or tapes

free Display memory usage
fsck File system consistency check and repair ftp File Transfer

Protocol

function Define Function Macros

fuser Identify/kill the process that is accessing a file

g

gawk Find and Replace text within file(s) getopts Parse

positional parameters

grep Search file(s) for lines that match a given pattern groupadd Add a user

security group

groupdel Delete a group

https://ss64.com/bash/ddrescue.html
https://ss64.com/bash/declare.html
https://ss64.com/bash/df.html
https://ss64.com/bash/diff.html
https://ss64.com/bash/diff3.html
https://ss64.com/bash/dig.html
https://ss64.com/bash/dir.html
https://ss64.com/bash/dircolors.html
https://ss64.com/bash/dirname.html
https://ss64.com/bash/dirs.html
https://ss64.com/bash/dmesg.html
https://ss64.com/bash/du.html
https://ss64.com/bash/echo.html
https://ss64.com/bash/egrep.html
https://ss64.com/bash/eject.html
https://ss64.com/bash/enable.html
https://ss64.com/bash/env.html
https://ss64.com/bash/env.html
https://ss64.com/bash/eval.html
https://ss64.com/bash/exec.html
https://ss64.com/bash/exec.html
https://ss64.com/bash/exit.html
https://en.wikipedia.org/wiki/Expect
https://ss64.com/bash/expand.html
https://ss64.com/bash/export.html
https://ss64.com/bash/expr.html
https://ss64.com/bash/expr.html
https://ss64.com/bash/false.html
https://ss64.com/bash/fdformat.html
https://ss64.com/bash/fdisk.html
https://ss64.com/bash/fg.html
https://ss64.com/bash/fgrep.html
https://ss64.com/bash/file.html
https://ss64.com/bash/find.html
https://ss64.com/bash/fmt.html
https://ss64.com/bash/fold.html
https://ss64.com/bash/for.html
https://ss64.com/bash/fsck.html
https://ss64.com/bash/ftp.html
https://ss64.com/bash/function.html
https://ss64.com/bash/fuser.html
https://ss64.com/bash/awk.html
https://ss64.com/bash/getopts.html
https://ss64.com/bash/grep.html
https://ss64.com/bash/groupadd.html
https://ss64.com/bash/groupdel.html

9

groupmod Modify a group

groups Print group names a user is in

gzip Compress or decompress named file(s)

h

hash Remember the full pathname of a name argument head

 Output the first part of file(s)

help Display help for a built-in command • history

Command History

hostname Print or set system name

i

iconv Convert the character set of a file id Print user

and group id's

if Conditionally perform a command ifconfig

Configure a network interface install Copy files and set

attributes ip Routing, devices and tunnels

j

jobs List active jobs •

join Join lines on a common field
k

kill Kill a process by specifying its PID killall Kill

processes by name

l

let Perform arithmetic on shell variables • link Create a

link to a file

ln Create a symbolic link to a file local Create a

function variable • locate Find files

logname Print current login name logout Exit

a login shell •

look Display lines beginning with a given string lpc Line
printer control program

lpr Off line print lprint Print

a file lprintd Abort a print job lprintq List

the print queue

ls List information about file(s) lsof List

open files

m

make Recompile a group of programs man

 Help manual

mkdir Create new folder(s) mkfifo

 Make FIFOs (named pipes) mkfile
 Make a file

mktemp Make a temporary file

more Display output one screen at a time most

 Browse or page through a text file

https://ss64.com/bash/groupmod.html
https://ss64.com/bash/groups.html
https://ss64.com/bash/gzip.html
https://ss64.com/bash/hash.html
https://ss64.com/bash/head.html
https://ss64.com/bash/head.html
https://ss64.com/bash/history.html
https://ss64.com/bash/hostname.html
https://ss64.com/bash/iconv.html
https://ss64.com/bash/id.html
https://ss64.com/bash/if.html
https://ss64.com/bash/ifconfig.html
https://ss64.com/bash/ifconfig.html
https://ss64.com/bash/install.html
https://ss64.com/bash/ip.html
https://ss64.com/bash/jobs.html
https://ss64.com/bash/join.html
https://ss64.com/bash/kill.html
https://ss64.com/bash/killall.html
https://ss64.com/bash/let.html
https://ss64.com/bash/link.html
https://ss64.com/bash/ln.html
https://ss64.com/bash/local.html
https://ss64.com/bash/locate.html
https://ss64.com/bash/logname.html
https://ss64.com/bash/logout.html
https://ss64.com/bash/look.html
https://ss64.com/bash/lpc.html
https://ss64.com/bash/lpr.html
https://ss64.com/bash/ls.html
https://ss64.com/bash/lsof.html
https://ss64.com/bash/man.html
https://ss64.com/bash/man.html
https://ss64.com/bash/mkdir.html
https://ss64.com/bash/mkfifo.html
https://ss64.com/bash/mkfifo.html
https://ss64.com/bash/mkfile.html
https://ss64.com/bash/mkfile.html
https://ss64.com/bash/mktemp.html
https://ss64.com/bash/more.html
https://ss64.com/bash/most.html
https://ss64.com/bash/most.html

10

mount Mount a file system mtools

 Manipulate MS-DOS files

mtr Network diagnostics (traceroute/ping) mv Move or

rename files or directories mmv Mass Move and rename (files)

n
nc Netcat, read and write data across networks netstat Networking

connections/stats

nice Set the priority of a command or job nl Number lines

and write files

nohup Run a command immune to hangups notify-

send Send desktop notifications

nslookup Query Internet name servers interactively

o

open Open a file in its default application op Operator access
p

passwd Modify a user password paste

 Merge lines of files ping Test

a network connection pgrep List processes by

name pkill Kill processes by name

popd Restore the previous value of the current directory pr Prepare files for

printing

printcap Printer capability database printenv Print

environment variables printf Format and print data •
ps Process status

pushd Save and then change the current directory pv Monitor the

progress of data through a pipe pwd Print Working Directory

q

quota Display disk usage and limits quotacheck Scan a

file system for disk usage

r

ram ram disk device

rar Archive files with compression rcp Copy files

between two machines read Read a line from standard input

•

readarray Read from stdin into an array variable • readonly Mark

variables/functions as readonly reboot Reboot the system

rename Rename files

renice Alter priority of running processes remsync

Synchronize remote files via email return Exit a shell function

rev Reverse lines of a file rm

 Remove files

https://ss64.com/bash/mount.html
https://ss64.com/bash/mtools.html
https://ss64.com/bash/mtools.html
https://ss64.com/bash/mtr.html
https://ss64.com/bash/mv.html
https://ss64.com/bash/mmv.html
https://ss64.com/bash/nc.html
https://ss64.com/bash/netstat.html
https://ss64.com/bash/nice.html
https://ss64.com/bash/nl.html
https://ss64.com/bash/nohup.html
https://ss64.com/bash/notify-send.html
https://ss64.com/bash/notify-send.html
https://ss64.com/bash/nslookup.html
https://ss64.com/bash/open.html
https://ss64.com/bash/op.html
https://ss64.com/bash/passwd.html
https://ss64.com/bash/paste.html
https://ss64.com/bash/paste.html
https://ss64.com/bash/ping.html
https://ss64.com/bash/pkill.html
https://ss64.com/bash/pkill.html
https://ss64.com/bash/popd.html
https://ss64.com/bash/pr.html
https://ss64.com/bash/printenv.html
https://ss64.com/bash/printf.html
https://ss64.com/bash/ps.html
https://ss64.com/bash/pushd.html
https://ss64.com/bash/pv.html
https://ss64.com/bash/pwd.html
https://ss64.com/bash/quota.html
https://ss64.com/bash/quotacheck.html
https://ss64.com/bash/ram.html
https://ss64.com/bash/rar.html
https://ss64.com/bash/rcp.html
https://ss64.com/bash/read.html
https://ss64.com/bash/readonly.html
https://ss64.com/bash/rename.html
https://ss64.com/bash/return.html
https://ss64.com/bash/rev.html
https://ss64.com/bash/rm.html
https://ss64.com/bash/rm.html

11

rmdir Remove folder(s)

s

screen Multiplex terminal, run remote shells via ssh scp Secure copy

(remote file copy)

sdiff Merge two files interactively sed

 Stream Editor

select Accept keyboard input seq
 Print numeric sequences

set Manipulate shell variables and functions sftp Secure File

Transfer Program

shift Shift positional parameters shopt

 Shell Options

shutdown Shutdown or restart linux sleep Delay

for a specified time slocate Find files

sort Sort text files

source Run commands from a file '.'

split Split a file into fixed-size pieces ss Socket

Statistics

ssh Secure Shell client (remote login program) su Substitute user
identity

sudo Execute a command as another user sum

 Print a checksum for a file suspend Suspend

execution of this shell •

t

tail Output the last part of file

tar Store, list or extract files in an archive tee Redirect output

to multiple files
test Evaluate a conditional expression time Measure

Program running time timeout Run a command with a time

limit times User and system times

touch Change file timestamps

top List processes running on the system

tput Set terminal-dependent capabilities, color, position traceroute Trace Route to

Host

trap Execute a command when the shell receives a signal • tr Translate, squeeze,

and/or delete characters

true Do nothing, successfully tsort

 Topological sort

tty Print filename of terminal on stdin type Describe a
command •

u

ulimit Limit user resources • umask

 Users file creation mask umount

 Unmount a device

https://ss64.com/bash/rmdir.html
https://ss64.com/bash/screen.html
https://ss64.com/bash/scp.html
https://ss64.com/bash/sdiff.html
https://ss64.com/bash/sed.html
https://ss64.com/bash/sed.html
https://ss64.com/bash/select.html
https://ss64.com/bash/seq.html
https://ss64.com/bash/seq.html
https://ss64.com/bash/set.html
https://ss64.com/bash/shift.html
https://ss64.com/bash/shopt.html
https://ss64.com/bash/shopt.html
https://ss64.com/bash/shutdown.html
https://ss64.com/bash/sleep.html
https://ss64.com/bash/slocate.html
https://ss64.com/bash/sort.html
https://ss64.com/bash/source.html
https://ss64.com/bash/split.html
https://ss64.com/bash/ss.html
https://ss64.com/bash/ssh.html
https://ss64.com/bash/su.html
https://ss64.com/bash/sudo.html
https://ss64.com/bash/sum.html
https://ss64.com/bash/sum.html
https://ss64.com/bash/suspend.html
https://ss64.com/bash/tail.html
https://ss64.com/bash/tar.html
https://ss64.com/bash/tee.html
https://ss64.com/bash/test.html
https://ss64.com/bash/time.html
https://ss64.com/bash/timeout.html
https://ss64.com/bash/times.html
https://ss64.com/bash/touch.html
https://ss64.com/bash/top.html
https://ss64.com/bash/tput.html
https://ss64.com/bash/traceroute.html
https://ss64.com/bash/trap.html
https://ss64.com/bash/tr.html
https://ss64.com/bash/true.html
https://ss64.com/bash/tsort.html
https://ss64.com/bash/tsort.html
https://ss64.com/bash/tty.html
https://ss64.com/bash/type.html
https://ss64.com/bash/ulimit.html
https://ss64.com/bash/umask.html
https://ss64.com/bash/umask.html

12

unalias Remove an alias •
uniq Uniquify files
units Convert units from one scale to another
until Execute commands (until error)
uptime Show uptime

useradd Create new user account
userdel Delete a user account

usermod Modify user account

users List users currently logged in

V

V Verbosely list directory contents (`ls -l -b')

vdir
vi
vmstat

Verbosely list directory contents (`ls -l -b') Text Editor
Report virtual memory statistics

W

w wait

watch

wc
whereis

Show who is logged on and what they are doing Wait for a process to

complete • Execute/display a program periodically

Print byte, word, and line counts
Search the user's $path, man pages and source files

for a program

which Search the user's $path for a program file while Execute

commands

who Print all usernames currently logged in whoami Print the

current user id and name (`id -un')

wget Retrieve web pages or files via HTTP, HTTPS or FTP write Send a

message to another user

x

xargs Execute utility, passing constructed argument list(s) xdg-open Open a file or
URL in the user's preferred application. xz Compress or decompress .xz and .lzma files

yes Print a string until interrupted

zip Package and compress (archive) files.

. Run a command script in the current shell

!! Run the last command again

Comment / Remark

https://ss64.com/bash/alias.html
https://ss64.com/bash/uniq.html
https://ss64.com/bash/units.html
https://ss64.com/bash/until.html
https://ss64.com/bash/useradd.html
https://ss64.com/bash/userdel.html
https://ss64.com/bash/usermod.html
https://ss64.com/bash/users.html
https://ss64.com/vi.html
https://ss64.com/bash/vmstat.html
https://ss64.com/bash/w.html
https://ss64.com/bash/wait.html
https://ss64.com/bash/watch.html
https://ss64.com/bash/wc.html
https://ss64.com/bash/whereis.html
https://ss64.com/bash/which.html
https://ss64.com/bash/while.html
https://ss64.com/bash/who.html
https://ss64.com/bash/whoami.html
https://ss64.com/bash/write.html
https://ss64.com/bash/xargs.html
https://ss64.com/bash/xdg-open.html
https://ss64.com/bash/xz.html
https://ss64.com/bash/yes.html
https://ss64.com/bash/zip.html
https://ss64.com/bash/source.html
https://ss64.com/bash/bang.html
https://ss64.com/bash/rem.html

13

Procedure to connect to LINUX(putty)

Step 1:click on putty icon available on desk top. A window is opened

Step 2:fill in ip address of linux server and click open

Step 3: provide login and password (nothing is displayed on screen while typing password)

Step 4: change the default password at your first login

14

EXPERIMENT NO: 1. b)

Aim: Write a Shell Script that accepts a file name, starting and ending line numbers

as Arguments and displays all lines between the given line numbers.

ALGORITHM:

Step 1: Create a file with 5-6 lines of data

File can be created by vi sample.dat or cat sample.dat

Step 2:Now write a shell script with

vi 1.sh
step3:Check the no of arguments for shell script

if 0 arguments then print no arguments

else if 1 argument then print 1 argument

else if 2 arguments then print 2 arguments
else check for file is there or not(if file is not there print file does not exists)
1else sed -ne ''$2','$3' p' $1

sed is one of powerful filter(streameditor)
-e default option (script on command line)

-n suppresses automatic output

$2 first line number passed $3 2nd line number passed

p is a print command (prints current content to the pattern space).

$1 is name of file from which we are printing data between the line numbers.
Step 4:top

Script Name: 1sh

#!/bin/bash
if [$# -lt 3]

then

else

fi

echo "To execute you have to enter 3 arguments in command line in following order..."
echo " File Name ,starting line number and ending line number..."

sed -n $2,$3p $1

Commands used in the script:

Sed command:

stream editor for filtering and transforming text
1. Replacing or substituting string

Sed command is mostly used to replace the text in a file. The below simple sed command
replaces the word "unix" with "linux" in the file.

$sed 's/unix/linux/' file.txt

2. Replacing the nth occurrence of a pattern in a line

$sed 's/unix/linux/2' file.txt

Replaces 2nd occurrence
3. printing pines for a given range

$sed –n 1,5p hello.txtPrints first 5 lines in the file hello.txt

15

nl command:
The nl utility in Linux is used to give number lines of a file on console.
Example:

$ nl sort.txt
1 UK
2 Australia
3 Newzealand

4 Brazil

5 America

Execution:

check how many lines of data in the input file

root@localhost sh]# cat hello.txt | nl

1 abc

2 def

3 ghi
4 abc
5 abc
6 cccc

Executing Shell script:

run1:
[root@localhost sh]# sh 1.sh abc1.txt 2 4
def

ghi
abc

compare with the data in the file and output

Viva Questions

1. What is a shell script?
2. How to find current shell name

3.How to switch to another shell

4.How to execute shell Script

Exercises:

S.No. Task

1 Write a shell script to count no of character in a file ,prompt for input file

2 Write a shell script to count no of character in a file name given in command prompt

3 Write a shell script to perform arithmetic operation using case statement

16

EXPERIMENT NO: 1. c)

AIM: Write a shell script that deletes all lines containing the specified word in one or more files

Supplied as arguments to it.

ALGORITHM:

Step 1: Create a file with 5-6 lines of data

Create the 2 file f1 and f2 as vi s1and vi s2

Step2: Now write a shell script with

vi 2.sh
step3:Check the no of arguments for shell script

if 0 arguments then print no arguments

else pattern=$1(word will be stored in pattern)

for fname in $*

for every filename in given files

if it is a file if [-f $fname] then
print DELETING $pattern FROM

$fname sed '/'$pattern'/d' $fname
sed acts as filter if word is a file in any line that will be deleted
‘/’ is used to represent regular expressions
‘/d’ is a delete command in sed
else print file NOT FOUND

Script name: 2.sh

#!/bin/bash

if [$# -lt 2]then
echo "Enter atlest two files as input in command line"

else

printf "enter a word to find:"

read word

for f in $*
do

done

fi

printf "\n In File $f:\n"

sed /$word/d $f

Execution:

run1:

check data in input files
[root@localhost sh]# cat abc1.txt

abc

def

ghi
abc

abc

cccc

[root@localhost sh]# cat abc2.txt

abc

def

ghi
abc

abc

cccc

Executing shell script
[root@localhost sh]# sh 2.sh abc1.txt abc2.txt

enter a word to find:abc

In File abc1.txt:
def

ghi

cccc
In File abc2.txt:
def

ghi

cccc

Expected output:

Displays lines from files s1 s2 after deleting the word hi

Viva Questions

1.Explain various loops in shell script

2.Explain grep

3.Explain egep
4.Explain fgep

5. .Explain sed

Exercises:

S.No. Task

1 Write a shell script to count occurrence of a word in a file

2 Write a shell script to print line numbers in which a particular word has occurred where word
is provides as input.

27

17

28

EXPERIMENT NO: 1. d)

Aim: Write a shell script that displays a list of all files in the current directory to which the user
has read, write and execute permissions.

ALGORITHM:

Step1: selects list of files from present working directory
Step 2:check for each file wither its is has read, write and execute permissions if true goto step 3
Step 3: print file

Step 4 :stop

Script name: 3.sh

#!/bin/bash
echo "List of Files which have Read, Write and Execute Permissions in Current Directory are..."
for file in *

do

if [-r $file -a -w $file -a -x $file]

then

echo $file
fi

done

Execution:

$sh 3.sh

Expected output:
by executing above shell script you will get all files which has read ,write and execute
Permissions in current working directory

sample output

[root@localhost sh]# sh 3.sh
List of Files which have Read, Write and Execute Permissions in Current Directory are...

5.sh

a.out

Viva Questions:

1.Display all files in a directory

2.how to use chmod

3.How to change file permissions

Exercises:

S.No. Task

1 Write a shell script to display all file with read or write or execute permissions provide a

selection menu
2 Write a comparison report for using chmod using symbolic representation or octal

number representation

3 Write a shell script to count no of file in current directory with full permissions

28

EXPERIMENT NO: 2.a)

Aim:-Write a shell script that receives any number of file names as arguments checks if every

argument supplied is a file or directory and reports accordingly. Whenever the argument is

a file it reports no of lines present in it

ALGORITHM:

step 1: if arguments are less than 1 print Enter at least one input file name and goto step 9

Step 2: selects list a file from list of arguments provided in command line

Step 3: check for whether it is directory if yes print is directory and goto step 9

step 4: check for whether it is a regular file if yes goto step 5 else goto step 8

Step 5: print given name is regular file

step 6: print No of lines in file

step 7: goto step

step 8: print not a file or adirectory

step 9: stop

Script name: 4.sh
#!/bin/bash

if [$# -lt 1]

then

else
echo "Enter at least one input file name"

for i in $*

do

if [-d $i]

then

echo " given name is directory"

elif [-f $i]

then

done

fi

else

fi

echo " given name is file: $i"

echo " No of lines in file are : `wc -l $i`"

echo "given name is not a file or a directory"

Execution:

provide two file names as input one a regular file and other directory

for example abc1.txt a text file as first argument and vazralu a directory as second argument

Run1:

19

[root@localhost sh]# sh 4.sh abc1.txt vazralu
given name is file: abc1.txt

No of lines in file are : 7 abc1.txt

29

vazralu is directory

run 2:[root@localhost sh]# sh 4.sh abc1.txt abc2.txt
given name is file: abc1.txt

No of lines in file are : 7 abc1.txt

given name is file: abc2.txt

No of lines in file are : 7 abc2.txt

Viva Questions:

1. What is an internal command in Linux?

Internal commands are also called shell built-in commands. Example: cd,fg. Since these are shell

built-in, no process is created while executing these commands, and hence are considered to be

much faster.

2. x and y are two variables containing numbers? How to add these 2 numbers?

$ expr $x + $y

3. How to add a header record to a file in Linux?

$ sed -i '1i HEADER' file

4. How to find the list of files modified in the last 30 mins in Linux?

$ find . -mmin -30

5. How to find the list of files modified in the last 20 days?

$ find . -mtime -20

Exercises:

S.No. Task

1 Write a shell script to count no of regular files in the current working directory

2 Write a shell script to display list of currently logged users

30

30

EXPERIMENT NO: 2. b)

Aim:-Write a shell script that accepts a list of file names as its arguments, counts and

reports the occurrence of each word that is present in the first argument file on other

argument files.

ALGORITHM:

step1: Check the no of arguments for shell script

if 0 arguments then print no arguments

step2:else translate each word in the first file is to be on separate line

which will be stored in temp file

step3: for i in $*

for every filename in given files

step 4: translate each word in the file is to be on separate line

which will be stored in temp1 file

step5: count no of lines in temp file assign it to j

step6: initialize j=1
step 7: while i< j

extract the line that are common in both the file by using

head and tail commands

then apply the filter grep to count and print the lines
which are common to files

increment j

step 8: stop

Script name:5.sh

#!/bin/bash

echo "no of arguments $#"

if [$# -le 2]

then

echo "Error : Invalid number of arguments."

exit

fi
str=`cat $1 | tr '\n' ' '`

for a in $str

do

done

echo "in file $a"

echo "Word = $a, Count = `grep -c "$a" $2`"

Execution and output:

check data in abc1.txt file

[root@localhost sh]# cat abc1.txt

abc

def

ghi

abc

abc 31

30

cccc

check data in abc1.txt file
[root@localhost sh]# cat abc2.txt
abc

def

ghi

abc

abc

cccc

executing script
[root@localhost sh]# sh 5.sh abc1.txt abc2.txt
Word = abc, Count = 3

Word = def, Count = 1

Word = ghi, Count = 1

Word = abc, Count = 3

Word = abc, Count = 3

Word = cccc, Count = 1

Viva Questions

1. What is Shell Scripting ?
Shell scripting, in Linux or Unix, is programming with the shell using which you can automate your tasks.

A shell is the command interpreter which is the interface between the User and the kernel. A shell script
allows you to submit a set of commands to the kernel in a batch. In addition, the shell itself is very powerful

with many properties on its own, be it for string manipulation or some basic programmingstuff.

2. The command "cat file" gives error message "--bash: cat: Command not found". Why?
It is because the PATH variable is corrupt or not set appropriately. And hence the error because the cat

command is not available in the directories present PATH variable.

3. How to find the length of a string in Linux?
$ x="welcome" $ echo ${#x} 7
4. What are the different timestamps associated with a file?

Modification time:- Refers to the time when the file is last modified.
Access time :- The time when the file is last accessed.

Changed time :- The time when the attributes of the file are last changed.

5. How to get the list of files alone in a directory in Linux?
$ ls -lrt | grep ^-

Exercises:

S.No. Task

1 Write a shell script to print prime numbers

2 Write a shell script to print Fibonacci numbers

32

30

EXPERIMENT NO: 3. a)

Aim:-Write a shell script to list all of the directory files in a directory.

Algorithm:

Step1: enter the name of the directory

Read dir
Step2: if it is a directory

Then list the files present in that directory

By using ls command with –p option to list all directory files in a given directory

Step 3: else enter the directory name

Step 4: stop

Script name: 6.sh

#!/bin/bash

echo " Enter dir name: "

read dir

if [-d $dir]

then

else

fi

printf " Files in Directory $dir are...\n`ls $dir`"

echo " Dir does not exist"

Execution and output:

[root@localhost sh]# sh 6.sh

Enter dir name:

japs

Files in Directory japs are...

abc1.txt

abc2.txt

ls-l.c

prg5

s1

Viva Questions

1. A string contains a absolute path of a file. How to extract the filename alone from the absolute

path in Linux?

$ x="/home/guru/temp/f1.txt"

$ echo $x | sed 's^.*/^^'

2. How to find all the files created after a pre-defined date time, say after 10th April 10AM?

This can be achieved in 2 steps:

1. Create a dummy file with the time stamp, 10th April 10AM.
2.Find all the files created after this dummy file.

$ touch -t 1004101000 file

33

30

$ find . -newer file

3. The word "Unix" is present in many .txt files which is present across many files and also

files present in sub directories. How to get the total count of the word "Unix" from all the .txt

files?

$ find . -name *.txt -exec grep -c Unix '{}' \; | awk '{x+=$0;}END{print x}'

Exercises:

S.No. Task

1 How to find the files modified exactly before 30minutes?
$ find . -mmin 30

2 How to print the contents of a file line by line in Linux?

34

30

EXPERIMENT NO: 3. b)

Aim:-Write a shell script to find factorial of a given number.

ALGORITHM

Step 1: read any number to find factorial
Step 2: initialize fact=1 and i=1

Step 3: while i less than

do

fact=fact* i

i=i+1

done

step 4:print fact

step 5:stop.

Script Name:7.sh

#!/bin/bash

echo "Factorial Calculation Script. .."

echo "Enter a number: "

read f

fact=1

factorial=1
while [$fact -le $f]
do

done

factorial=`expr $factorial * $fact`

fact=`expr $fact + 1`

echo "Factorial of $f = $factorial"

Execution and Output:

[root@localhost sh]# sh 7.sh

Factorial Calculation Script....

Enter a number: 4

Factorial of 4 = 24

Exercises:

S.No. Task

1 Write a shell script to find sum of first n natural numbers

2 Write a shell script to find largest of given three numbers

35

30

EXPERIMENT NO: 4. a)

Aim:-write an awk script to count number of lines in a file that does not contain vowels

ALGORITHM
Step 1: create a file with 5-10 lines of data
Step 2: write an awk script by using grep command to filter the lines

that do not contain vowels
awk ‘ $0 ~/aeiou/ {print $0}’ file1

step3: count=count+1

step4:print count
step5:stop

Awk script name:nm.awk

BEGIN{}

{

If($0 !~/[aeiou AEIOU]/)

wordcount+=NF

}

END

{
print "Number of Lines are", wordcount

}
input file for awk script:data.dat

bcdfghj

abcdfghj

bcdfghj

ebcdfghj

bcdfghj

ibcdfghj

bcdfghj

obcdfghj

bcdfghj

ubcdfghj

Executing the script:

[root@localhost awk]# awk -f nm.awk data.dat

bcdfghj

bcdfghj

bcdfghj

bcdfghj

bcdfghj

Number f lines are 5

Exercises:

S.No. Task

1 Write an awk script to find square root of a given number

2 Write an awk script to find maximum of two numbers , read input from keyboard

36

30

EXPERIMENT NO: 4. b)

Aim:-write an awk script to find the no of characters ,words and lines in a file

ALGORITHM

Step 1: create a file with 5 to10 lines of data
Step 2: write an awk script

find the length of file

store it in chrcnt

step3: count the no of fields (NF), store it in wordcount

step4: count the no of records (NR), store it in NR

step5: print chrcnt,NRwordcount
step6: stop

Awk script name:nc.awk

BEGIN{}

{
print len=length($0),"\t",$0

wordcount+=NF

chrcnt+=len

}

END {

}

print "total characters",chrcnt
print "Number of Lines are",NR

print "No of Words count:",wordcount

input data file name:data.dat

bcdfghj

abcdfghj

bcdfghj

ebcdfghj

bcdfghj

ibcdfghj

bcdfghj

obcdfghj

bcdfghj

ubcdfghj

Executing the script:

[root@localhost awk]# awk -f nc.awk data.dat

7 bcdfghj

8 abcdfghj

7 bcdfghj

8 ebcdfghj

7 bcdfghj
37

30

8 ibcdfghj
7 bcdfghj

8 obcdfghj

7 bcdfghj

8 ubcdfghj

total characters 75
Number of Lines are 10

No of Words count: 10

VIVA QUESTIONS:

1. How to find the last modified file or the newest file in a directory?

$ ls -lrt | grep ^- | awk 'END{print $NF}'

2. How to access the 10th command line argument in a shell script in Linux?

$1 for 1st argument, $2 for 2nd, etc... For 10th argument, ${10}, for 11th, ${11} and so on.

3. How to find the sum of all numbers in a file in Linux?

$ awk '{x+=$0}END{print x}' file

4. How to delete a file which has some hidden characters in the file name?

Since the rm command may not be able to delete it, the easiest way to delete a file with some hidden
characters in its name is to delete it with the find command using the inode number of the file.

$ ls –li

total 32

9962571 -rw-r--r-- 1 guru users 0 Apr 23 11:35

$ find . -inum 9962571 -exec rm '{}' \;

5. Using the grep command, how can you display or print the entire file contents?

$ grep '.*' file

6. What is the difference between a local variable and environment variable in Linux?

A local variable is the one in which the scope of the variable is only in the shell in which it is defined. An

environment variable has scope in all the shells invoked by the shell in which it is defined.

38

30

EXPERIMENT NO: 5

Aim:Implement in c language the following Unix commands using

system calls a)cat b)ls c)mv

a) AIM:-Write a c program to implement cat command using system calls

Description:

cat COMMAND: cat linux command concatenates files and print it on the standard

output.

SYNTAX:

cat [OPTIONS] [FILE]...

OPTIONS:

-A Show all.

-b Omits line numbers for blank space in the output.

-e A $ character will be printed at the end of each line prior to a new line.

-E Displays a $ (dollar sign) at the end of each line.

-n Line numbers for all the output lines.

-s If the output has multiple empty lines it replaces it with one empty line.
-T Displays the tab characters in the output.

-v Non-printing characters (with the exception of tabs, new-lines & form-feeds) are printed visibly.

Operations With cat Command:

1. To Create a new file:

$cat > file1.txt

This command creates a new file file1.txt. After typing into the file press control+d (^d) simultaneously to

end the file.

2. To Append data into the file:

$cat >> file1.txt

To append data into the same file use append operator >> to write into the file, else the file will be

overwritten (i.e., all of its contents will be erased).

3. To display a file:

$cat file1.txt

This command displays the data in the file.

4. To concatenate several files and display:

$cat file1.txt file2.txt

The above cat command will concatenate the two files (file1.txt and file2.txt) and it will display the output

in the screen. Some times the output may not fit the monitor screen. In such situation you can print those
files in a new file or display the file using less command.

cat file1.txt file2.txt | less

5. To concatenate several files and to transfer the output to another file.
$cat file1.txt file2.txt > file3.txt

In the above example the output is redirected to new file file3.txt. The cat command will create new file

file3.txt and store the concatenated output into file3.txt.

39

30

Algorithm:
Step 1:Start
Step 2:read arguments from keyboard at command line
Step 3:if no of arguments are less than two print ENTER CORRECT ARGUMENTS

Else goto step 4

Step4:read the date from specified file and write it to destination file

Step 5 :stop

Program file name:catdemo.c

#include<stdio.h>

#include<sys/types.h>

#include<stdlib.h>

#include<fcntl.h>
#include<sys/stat.h>

int main(int argc,char *argv[])
{
int fd,n;
char buff[512];

if(argc!=2)

printf("ENTER CORRECT ARGUMENTS :");
if((fd=open(argv[1],4))<0)
{

printf("ERROR");
return 0;

}

while(n=read(fd,buff,sizeof(buff))>0)

write(1,buff,n);

}

b) AIM:-Write a c program to implement ls command using systemcalls

Description:

ls command is used to list the files present in a directory

Algorithm:

Step 1. Start.

Step 2. open directory using opendir() system call.

Step 3. read the directory using readdir() system call.

Step 4. print dp.name and dp.inode .

Step 5. repeat above step until end of directory.

Step 6: Stop.

Program name: lsdemo.c

#include<stdio.h>

#include<dirent.h>

void quit(char*,int);

int main(int argc,char **argv)

{
40

30

DIR *dirop;

struct dirent *dired;
if(argc!=2)

{

printf("Invalid number of arguments\n");

}

if((dirop=opendir(argv[1]))==NULL)

printf("Cannot open directory\n");

while((dired=readdir(dirop))!=NULL)
printf("%10d %s\n",dired>d_ino,dired>d_name);

closedir(dirop);

}

c) AIM:write a c program that simulates mv command (using system calls)

Description:
mv command is used to move or rename a file
synatax:

mv file1 file2

here file1 is renamed as file2

Algorithm:

Step 1: Start

Step 2: open an existed file and one new open file using open() system call

Step 3: read the contents from existed file using read() system call

Step 4:write these contents into new file using write system call using write() system call

Step 5: repeat above 2 steps until eof

Step 6: close 2 file using fclose() system call

Step 7: delete existed file using using unlink() system

Step 8: Stop.

Program File name:mvdemo.c

#include<stdio.h>

#include<string.h>

int main(int argc ,char *argv[])

{

int r,i;

char p[20],q[20];

if(argc<3)

printf("improper arguments\n file names required\n");
else

if(argc==3)

{

printf("\n%s\n",argv[1],argv[2]);

r=link(argv[1],argv[2]);

printf("%d\n",r);

unlink(argv[1]); 41

30

}
else

{

}

}

for(i=1;i<argc-1;i++)

{

strcpy(p,argv[argc-1]);

strcat(p,"/");

strcat(p,argv[i]);
printf("%s%s\n",argv[i],p);
link(argv[i],p);

unlink(argv[i]);

}

42

30

EXPERIMENT NO: 6

Aim:Write a C program that takes one or more file/directory names as

command line input and reports following information

A) File Type B)Number Of Links

c) Time oflast Acces D) Read,write and execute permissions

Algorithm:

Step 1:start

Step 2:Declare struct stat a

Step 3:read arguments at command line

Step 4: set the status of the argument using stat(argv[i],&a);
Step 5:Check whether the given file is Directory file by using S_ISDIR(a.st_mode)

if it is a directory file print Directory file

Else

print is Regular file

Step6: print number of links

Step 7:print last time access

Step 8:Print Read,write and execute permissions

Step 9:stop

Program File name: 13.c

#include<stdio.h>

#include<sys/stat.h>

#include<time.h>

int main(int argc,char *argv[])

{
int i,j;

struct stat a;

for (i=1;i<argc;i++)

{

printf("%s : ",argv[i]);

stat(argv[i],&a);

if(S_ISDIR(a.st_mode))

{

}

else

{

}

printf("is a Directory file\n");

printf("is Regular file\n");

printf("******File Properties********\n");

printf("Inode Number:%d\n",a.st_ino);

printf("UID:%o\n",a.st_uid);

printf("GID:%o\n",a.st_gid);
printf("No of Links:%d\n",a.st_nlink);
printf("Last Access time:%s",asctime(localtime(&a.st_atime)));

43

30

printf("Permission flag:%o\n",a.st_mode%512);
printf("size in bytes:%d\n",a.st_size);
printf("Blocks Allocated:%d\n",a.st_blocks);

printf("Last modification time %s\n",ctime(&a.st_atime));

}

}

Exercises:

S.No. Task

1 write a c program that simulates mkdir command using system calls

2 write a c program that simulates rmdir command using system calls

44

30

EXPERIMENT NO: 7

Aim:Write a C program to list every file in directory, its inode number and file name

Algorithm:
Step 1:Start
Step 2:Read Directory name
Step 3:open the directory

Step 4: print file name and Inode number of each file in the directory

Step 5:Stop

Program file name:inode.c

#include<fcntl.h>

#include<stdio.h>

#include<dirent.h>

#include<sys/stat.h>

int main(int argc,char*argv[])

{

DIR *dirop;

struct dirent *dired;

if(argc!=2)

{

printf("Invalid number of arguments\n");

}

else if((dirop=opendir(argv[1]))==NULL)

printf("Cannot open Directory\n");

else

{

printf("%10s %s \n","Inode","File Name");

while((dired=readdir(dirop))!=NULL)

printf("%10d %s\n ",dired->d_ino,dired->d_name);

closedir(dirop);

}

return 0;

}

Exercises:
S.No. Task

1 Write a c program to test whether the given file is seekable or not

2 Write a c program to for requesting and releasing lock

45

30

EXPERIMENT NO: 8 a)

Aim:Write a C program to create child process and allow parent process to display

“parent” and the child to display “child” on the screen

Algorithm:
Step 1: start

Step2: call the fork() function to create a child process
fork function returns 2 values

step 3: which returns 0 to child process
step 4:which returns process id to the parent process

step 5:stop

Program file name:16.c
#include<stdio.h>

#include<stdlib.h>
#include<unistd.h>
int main()

{

int pid,pid1,pid2;

pid=fork();
if(pid==-1)

{

}

Execution:

}

if(pid!=0)
{

}

else

{

}

printf("ERROR IN PROCESS CREATION \n");
exit(0);

pid1=getpid();
printf("\n the parent process ID is %d", pid1);

pid2=getpid();

printf("\n the child process ID is %d\n", pid2);

[root@dba ~]# cc -o 16 16.c

[root@dba ~]# ./16

the child process ID is 4485

the parent process ID is 4484

46

30

EXPERIMENT NO: 8 b)

Aim:Write a C program to create zombie process

Algorithm: Step 1:call fork function to create a child process

Step 2:if fork()>0

Then creation of Zombie
By applying sleep function for 10 seconds
Step 3: now terminate the child process

Step 4: exit status child process not reported to parent

Step 5: status any process which is zombie can known by

Applying ps(1) command

Step 6: stop

Program file name:17.c
#include <stdio.h>

#include<stdlib.h>

int main()

{

int pid;

pid=fork();

if(pid == 0)

{ printf("Iam child my pid is %d\n",getpid());

printf("My parent pid is:%d\n",getppid());

exit(0);

}
else

{ printf("I am parent, my pid is %d\n",getpid());

sleep(100);

exit(0);

}

}

Execution:

To see zombie process, after running the program, open a new terminal Give this
command $ps -el|grep a.out

First terminal

Compilation:

[root@dba ~]# cc 17.c

Executing binary

[root@dba ~]# ./a.out

Iam child my pid is 4732

My parent pid is:4731

I am parent, my pid is 4731

Checking for zombie process. Z means zombie process
Second terminal

[root@dba ~]# ps -el|grep a.out

0 S 0 4731 4585 0 77 0 - 384 - pts/3 00:00:00 a.out

1 Z 0 4732 4731 0 77 0 - 0 exit pts/3 00:00:00 a.out <defunct>

Exercises:

S.No. Task

1 Write a program to create zombie process and then call system functions to execute ps(1)
command to verify process is zombie

47

30

EXPERIMENT NO: 8 c)

Aim:-Write a C program to illustrate how an orphan process is created

Algorithm:
Step 1: call the fork function to create the child process

Step 2:if (pid==0)

Then print child id and parent id
else goto step 4

Step 3:Then sleep(10)

Print child id and parent id

Step 4: Print child id and parent id

Step 5:which gives the information of orphan process

Step 6:stop
Program file name:18.c
#include <stdio.h>
#include<stdlib.h>

int main()

{

int pid;

printf("I am the original process with PID %d and PPID %d\n",getpid(),getppid());

pid=fork();

if(pid == 0)
{ printf("I am child, my pid is %d ",getpid());

printf("My Parent pid is:%d\n",getppid());

sleep(10);

printf("Now my pid is %d ",getpid());

printf("My parent pid is:%d\n",getppid());

exit(0);

}

else

{ sleep(10);

printf("I am parent, my pid is %d\n",getpid());

//printf("I am going to die\n");

}

printf("PID:%d terminates...\n",getpid());

}

Execution:
Compilation : [root@dba ~]# cc -o 18 18-1.c

Executing Binary:

[root@dba ~]# ./18
I am the original process with PID 5960 and PPID 5778

I am child, my pid is 5961 My Parent pid is:5960

I am parent, my pid is 5960

PID:5960 terminates...

[root@dba ~]# Now my pid is 5961 My parent pid is:1

Exercises:
S.No. Task

1 Write a program to illustrate Vfork();

2 Write a program to illustrate fork();

48

30

EXPERIMENT NO: 9 a)

Aim:- Write a C program that illustrate communication between two unrelated process

using named pipes

Algorithm for server :

step 1:Start
step 2:Create a first named pipe by using mkfifo system call

Pipe1=mkfifo(NP1,0666).

step 3:if mkfifo returns -1 then

print a message that error in creating the pipe.

step 4:Create a second named pipe by using mkfifo system call
Pipe2=mkfifo(NP2,0666).

step 5:if mkfifo returns -1 then

print a message that error in creating the pipe.
step 6:Open the first pipe for reading by open system call by setting

O_RDONLY Fd=open(NP1,O_RDONLY)

step 7: Open the second pipe for writing by open system call by setting
O_WRONLY Fd=open(NP2,O_WRONLY)

step 8:read the data from the first pipe by using read system call
numread=Read(fd,buf,MAX_BUF-SIZE) buf*numread+=’\0’

step 9:print the data that we have read from pipe

step 10:convert the data to the upper case.

step 11:write the converted string back to second pipe by write(fd,buf, strlen(buf))

step 12:stop.

Algorithm for client :

Step 1:start

Step 2:check whether the no of arguments specified were correct or not
Step 3:if no of arguments are less then print error message

Step 4:Open the first named pipe for writing by open system call by setting

O_WRONLY Fd=open(NP1,O_WRONLY)

Step 5: .Open the second named pipe for reading by open system call by setting
O_RDONLY Fd=open(NP2,O_RDONLY)

Step 6: write the data to the pipe by using write system call
write(fd,argv[1],strlen(argv[1]))

Step 7: read the data from the first pipe by using read system call

numread=Read(fd,buf,MAX_BUF_SIZE) buf*numread+=’\0’

Step 8: print the data that we have read from pipe

Step 9:stop

49

30

 Program file name:named_pipe.c

#include<stdio.h>

#include<stdlib.h>

#include<sys/types.h>

#include<sys/stat.h>

#include<string.h>

#include<fcntl.h>

void server(int,int);

void client(int,int);

int main()

{

int p1[2],p2[2],pid;

pipe(p1);

pipe(p2);
pid=fork();
if(pid==0)

{

close(p1[1]);

close(p2[0]);
server(p1[0],p2[1]);

return 0;

}
close(p1[0]);

close(p2[1]);

client(p1[1],p2[0]);

wait();

return 0;

}

void client(int wfd,int rfd)

{

int i,j,n;
char fname[2000];
char buff[2000];

printf("ENTER THE FILE NAME :");

scanf("%s",fname);

printf("CLIENT SENDING THE REQUESTPLEASE WAIT\n");

sleep(10);

write(wfd,fname,2000);

n=read(rfd,buff,2000);

buff[n]='\0';

printf("THE RESULTS OF CLIENTS ARE \n");

write(1,buff,n);

}

void server(int rfd,int wfd)

{

int i,j,n; char fname[2000];

char buff[2000];
50

30

n=read(rfd,fname,2000);
fname[n]='\0';

int fd=open(fname,O_RDONLY);

sleep(10);

if(fd<0)

write(wfd,"can't open",9);

else

n=read(fd,buff,2000);

write(wfd,buff,n);

}

Exercises:
S.No. Task

1 Write a program to demonstrate the function of a pipe

2 Write a program to demonstrate the pipe function using dup() system call

51

30

EXPERIMENT NO: 9 b)

Aim:-Write a C program that receives a message from message queue and display them

Algorithm:
Step 1:Start
Step 2:Declare a message queue structure

typedef struct msgbuf {
long mtype;

char mtext[MSGSZ];

} message_buf;
Mtype =0 Retrieve the next message on the queue, regardless of its mtype.
PositiveGet the next message with an mtype equal to the specified
msgtyp.

Negative Retrieve the first message on the queue whose mtype fieldis

less than or equal to the absolute value of the msgtyp argument.

Usually mtype is set to1

mtext is the data this will be added to the queue.
Step 3:Get the message queue id for the "name" 1234, which was created by the server

key = 1234

Step 4 : if ((msqid = msgget(key, 0666< 0) Then print error

The msgget() function shall return the message queue identifier associated with the argument key.
Step 5: Receive message from message queue by using msgrcv function

int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg);
#include < sys/msg.h>

(msgrcv(msqid, &rbuf, MSGSZ, 1, 0)
msqid: message queue id

&sbuf: pointer to user defined structure MSGSZ: message size

Message type: 1
Message flag:The msgflg argument is a bit mask constructed by ORing together zero or
more of the following flags: IPC_NOWAIT or MSG_EXCEPT or MSG_NOERROR

Step 6:if msgrcv <0 return error
Step 7:otherwise print message sent is sbuf.mext
Step 8:stop

Exercises:
S.No. Task

1 Write a program to demonstrate a single process create a message queue and sends itself a
“welcome “ message via the queue

2 Write a program to demonstrate how we can print the status information about the queue

52

30

EXPERIMENT NO: 10 a)

Aim:-Write a C program to allow cooperating process to lock a resource for exclusive

use using, a) Semaphore
#include<stdio.h>

#include<stdlib.h>

#include<error.h>

#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/sem.h>

int main(void)

{

key_t key;

int semid;

union semun arg;

if((key==ftok("sem demo.c","j"))== -1)

{

perror("ftok");

exit(1);

}

if(semid=semget(key,1,0666|IPC_CREAT))== -1)

{

perror("semget"):

exit(1);

}

arg.val=1;

if(semctl(semid,0,SETVAL,arg)== -1)

{

perror("smctl");

exit(1);

}

return 0;

}

Exercises:
S.No. Task

1 Write a program using the simpler semaphore operation

2 Write a program to create a semaphore

53

30

EXPERIMENT NO: 10 b)

Aim:-Write a C program that illustrate the suspending and resuming process using signal

Algorithm:

Step 1: call the signal function to generate the signal

Step 2:execution of process will be started

Step 3:call alarm function to suspend the execution of current process

Step 4:then it will execute the signal function

Step 5:again the process will be resumed

Step 6:stop

Program

#include<stdio.h>
int main()

{

int n;
if(signal(SIGALRM,sig_alarm)==SIG_ERR)
printf(‚Signal error‛);

alarm(5);

for(n=0;n<=15;n++)
printf(‚from for loop n=%d‛,n);

printf(‚main program terminated‛);

}

void sig_alarm(int signo)

{

printf(‚from sigalarm function‛);
}

Exercises:
S.No. Task

1 Write a program using kill and rise functions

2 Write a program using abort()

54

30

EXPERIMENT NO: 10 c)

Aim:-Write a C program that implements producer –consumer system with two processes using

semaphores

Algorithm for producer :
step 1:Start
step 2:Create a named pipe by using mkfifo system call Pipe1=mkfifo(NP1,0666)

step 3:if mkfifo returns -1 then print a message that error in creating the pipe

step 4:Open the pipe for reading by open system call by setting O-RDONLY Fd=open(NP1,O-
RDONLY)

step 5:read the data from the pipe by using read system call

numread=Read(fd,buf,MAX-BUF-SIZE)

step 6:print the data that we have read from pipe

step 7:convert the data to the upper case.

step 8:print the converted data

step 9:stop.

Algorithm for consumer:

Step 1:start

step 2:check whether the no of arguments specified were correct or not
step3:if no of arguments are less then print error message
step 4:Open the pipe for writing by open system call by setting O_WRONLY

Fd= open (NP1, O_WRONLY)

step 5: write the data to the pipe by using write system call write(fd,argv[1],strlen(argv[1]))
step 6:stop

Consumer:
#include<stdio.h>
#include<unistd.h>

#include<fcntl.h>

#define MAXSIZE 10

#define FIFO_NAME "myfifo"
int main()

{
int fifoid; int fd, n; char *r;

system("clear");
r=(char *)malloc(sizeof(char)*MAXSIZE); int open_mode=O_RDONLY;

if((fd=open(FIFO_NAME, open_mode)) < 0)

{

printf("\nError: Named pipe cannot be opened\n"); exit(0);
}
while(1)
{

}

} /*main close*/

Producer program:
#include<stdio.h>

#include<unistd.h>
#include<fcntl.h>

#define MAXSIZE 10

n=read(fd, r, MAXSIZE); if(n > 0)

printf("\nConsumer read: %s", r);

#define FIFO_NAME "myfifo"

55

30

int main()

{
int fifoid; int fd, n; char *w;
int open_mode;

system("clear");

w=(char *)malloc(sizeof(char)*MAXSIZE);
open_mode=O_WRONLY;

fifoid=mkfifo(FIFO_NAME, 0755);

if(fifoid==-1)
{

printf("\nError: Named pipe cannot be Created\n"); exit(0);
}

if((fd=open(FIFO_NAME, open_mode)) < 0)
{

printf("\nError: Named pipe cannot be opened\n");
exit(0);

}

while(1)

{

printf("\nProducer :"); fflush(stdin);

read(0, w, MAXSIZE);
n=write(fd, w, MAXSIZE);
if(n > 0)

printf("\nProducer sent: %s", w);

}

} /*main close*/

Output:

$ cc –o producer producer.c #first window
$cc –o consumer consumer.c # second window
$./producer #first window
$./consumer # second window

Producer:

Producer sent: hai #first window
Consumer read: hai # second window

Producer sent: good morning #first window

Consumer read: good morning # second window
Producer sent: welcome #first window

Consumer read: welcome # second window

56

30

EXPERIMENT NO: 11
Aim:-Write client server programs using c for interaction between server and client process

using Unix Domain sockets

Algorithm:-

Sample UNIX server

Step 1:define NAME "socket"
Step 2: sock = socket(AF_UNIX, SOCK_STREAM, 0);
Step 3:if (sock < 0) perror("opening stream socket"); exit(1);
step4: server.sun_family = AF_UNIX;

strcpy(server.sun_path, NAME);

if (bind(sock, (struct sockaddr *) &server, sizeof(struct sockaddr_un)))

{

perror("binding stream socket"); exit(1);

}

step 5: print ("Socket has name %s\n", server.sun_path);
listen(sock, 5);

step 6: for (;;)

{

msgsock = accept(sock, 0, 0);
if (msgsock == -1)

perror("accept");

else

do { bzero(buf, sizeof(buf));

if ((rval = read(msgsock, buf, 1024)) < 0)

perror("reading stream message");

else if (rval == 0)

else print ("-->%s\n", buf);
} while (rval > 0);

close(msgsock);

}
close(sock);

unlink(NAME);

}

Step 7:stop

Programs:

Server.c

#include <stdio.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <sys/types.h>

#include <unistd.h>

#include <string.h> 57

30

int connection_handler(int connection_fd)

{

int nbytes;

char buffer[256];

nbytes = read(connection_fd, buffer, 256);

buffer[nbytes] = 0;

printf("MESSAGE FROM CLIENT: %s\n", buffer);

nbytes = snprintf(buffer, 256, "hello from the server");

write(connection_fd, buffer, nbytes);

close(connection_fd);

return 0;

}

int main(void)

{

struct sockaddr_un address;

int socket_fd, connection_fd;

socklen_t address_length;

pid_t child;

socket_fd = socket(PF_UNIX, SOCK_STREAM, 0);

if(socket_fd < 0)

{

printf("socket() failed\n");

return 1;

}

unlink("./demo_socket");

/* start with a clean address structure */

memset(&address, 0, sizeof(struct sockaddr_un));

address.sun_family = AF_UNIX;

snprintf(address.sun_path, UNIX_PATH_MAX, "./demo_socket");

if(bind(socket_fd,

(struct sockaddr *) &address,

sizeof(struct sockaddr_un)) != 0)

{

printf("bind() failed\n");

return 1;

}

58

30

if(listen(socket_fd, 5) != 0)

{

printf("listen() failed\n");

return 1;

}

while((connection_fd = accept(socket_fd,

(struct sockaddr *) &address,

&address_length)) > -1)

{

child = fork();

if(child == 0)

{

/* now inside newly created connection handling process */

return connection_handler(connection_fd);

}

/* still inside server process */

close(connection_fd);

}

close(socket_fd);

unlink("./demo_socket");

return 0;

}

Client.c

#include <stdio.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <unistd.h>

#include <string.h>

int main(void)

{

struct sockaddr_un address;

int socket_fd, nbytes;

char buffer[256];

socket_fd = socket(PF_UNIX, SOCK_STREAM,0);

if(socket_fd < 0)

{

printf("socket() failed\n");

return 1;

} 59

30

/* start with a clean address structure */

memset(&address, 0, sizeof(struct sockaddr_un));

address.sun_family = AF_UNIX;

snprintf(address.sun_path, UNIX_PATH_MAX, "./demo_socket");

if(connect(socket_fd,

(struct sockaddr *) &address,

sizeof(struct sockaddr_un)) != 0)

{

printf("connect() failed\n");

return 1;

}

nbytes = snprintf(buffer, 256, "hello from a client");

write(socket_fd, buffer, nbytes);

nbytes = read(socket_fd, buffer, 256);

buffer[nbytes] = 0;

printf("MESSAGE FROM SERVER: %s\n", buffer);

close(socket_fd);

return 0;

}

Exercises:
S.No. Task

1 Write a program to demonstrate getting and setting the socket options through socket related
system call

2 Write a program to demonstrate bind system call.

60

30

EXPERIMENT NO: 12

Aim:-Write a C program that illustrates two processes communicating using Shared memory

Algorithm:-

step1.Start

step 2.Include header files required for the program are

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <unistd.h>

#include <string.h>

#include <errno.h>

step 3.Declare the variable which are required as
pid_t pid

int *shared /* pointer to the shm */

int shmid

step 4.Use shmget function to create shared memory

#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg)
The shmget() function shall return the shared memory identifier associated with key The

argument key is equal to IPC_PRIVATE. so that the operating system selects the next

available key for a newly created shared block of memory. Size represents size of

shared memory block Shmflg shared memory permissions which are represented by octalinteger

shmid = shmget (IPC_PRIVATE, sizeof(int), IPC_CREAT | 0666);
print the shared memory id

step 5.if fork()==0 Then

begin

end
step 6.else

begin

end
step 7.stop.

shared = shmat(shmid, (void *) 0, 0)
print the shared variable(shared) *shared=2

print *shared sleep(2)

print *shared

shared = shmat(shmid, (void *) 0, 0)
print the shared variable(shared)
print *shared sleep(1) *shared=30

printf("Parent value=%d\n", *shared);

sleep(5)
shmctl(shmid, IPC_RMID, 0)

 Program:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <unistd.h>

#include <string.h>

#include <errno.h>
61

30

int main(void) {
pid_t pid;

int *shared; /* pointer to the shm */ int shmid;
shmid = shmget(IPC_PRIVATE, sizeof(int), IPC_CREAT | 0666); printf("Shared Memory

ID=%u",shmid);

if (fork() == 0) { /* Child */

/* Attach to shared memory and print the pointer */ shared = shmat(shmid, (void *) 0, 0);

printf("Child pointer %u\n", shared); *shared=1;

printf("Child value=%d\n", *shared); sleep(2);

printf("Child value=%d\n", *shared); } else { /* Parent */

/* Attach to shared memory and print the pointer */ shared = shmat(shmid, (void *) 0, 0);

printf("Parent pointer %u\n", shared); printf("Parent value=%d\n", *shared); sleep(1);
*shared=42;
printf("Parent value=%d\n", *shared); sleep(5);
shmctl(shmid, IPC_RMID, 0);

}

}

sampath@localhost ipc]$cc shared_mem.c
[sampath@localhost ipc]$./a.out

Shared Memory ID=65537Child pointer 3086680064 Child value=1

Shared Memory ID=65537Parent pointer 3086680064 Parent value=1

Parent value=42 Child value=42

Viva questions

1. define shared memory

2. what are file locking functions.

3.what are shared memory system calls.

4.define internet domain sockets

5.Difference between internet and unix domain sockets.

Exercises:
S.No. Task

1 Write a program to demonstrate communication of two different process
via shared memory

2 Write a program to demonstrate that the shared memory created will be available even after
the process which created is exited.

62

